\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometric realization of simplicial topological spaces} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{reminder_on_nice_simplicial_topological_spaces}{Reminder on nice simplicial topological spaces}\dotfill \pageref*{reminder_on_nice_simplicial_topological_spaces} \linebreak \noindent\hyperlink{bisimplicial_sets_and_good_resolutions}{Bisimplicial sets and good resolutions}\dotfill \pageref*{bisimplicial_sets_and_good_resolutions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_between_fat_and_ordinary_geometric_realization}{Relation between fat and ordinary geometric realization}\dotfill \pageref*{relation_between_fat_and_ordinary_geometric_realization} \linebreak \noindent\hyperlink{compatibility_with_limits}{Compatibility with limits}\dotfill \pageref*{compatibility_with_limits} \linebreak \noindent\hyperlink{ordinary_geometric_realization}{Ordinary geometric realization}\dotfill \pageref*{ordinary_geometric_realization} \linebreak \noindent\hyperlink{fat_geometric_realization}{Fat geometric realization}\dotfill \pageref*{fat_geometric_realization} \linebreak \noindent\hyperlink{RelationToHomotopyColimit}{Relation to the homotopy colimit}\dotfill \pageref*{RelationToHomotopyColimit} \linebreak \noindent\hyperlink{examples_and_applications}{Examples and Applications}\dotfill \pageref*{examples_and_applications} \linebreak \noindent\hyperlink{TopologicalPrincipalInfinityBundle}{Topological principal $\infty$-bundles}\dotfill \pageref*{TopologicalPrincipalInfinityBundle} \linebreak \noindent\hyperlink{ClassifyingSpaces}{Classifying spaces}\dotfill \pageref*{ClassifyingSpaces} \linebreak \noindent\hyperlink{CechNerves}{Cech nerves}\dotfill \pageref*{CechNerves} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{ReferencesCompatibilityHomotopyPullback}{(Non-)Compatibility with homotopy pullbacks}\dotfill \pageref*{ReferencesCompatibilityHomotopyPullback} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $X_\bullet$ a [[simplicial object]] in [[Top]] -- a [[simplicial topological space]] -- its \emph{[[geometric realization]]} is a plain [[topological space]] ${|X_\bullet|} \in Top$ obtained by gluing all topological space $X_n$ together, as determined by the face and degeneracy maps. The construction of ${|X_\bullet|}$ is a direct analog of the ordinary notion of [[geometric realization]] of a [[simplicial set]], but taking into account the [[topology]] on the spaces of $n$-simplices $X_n$. The [[duality|dual]] concept is that of [[totalization]] of [[cosimplicial topological spaces]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let [[Top]] in the following denote either \begin{itemize}% \item the [[category]] of [[compactly generated space|compactly generated]] [[weakly Hausdorff space]]s, or \item the category of [[k-space]]s. \end{itemize} Let $\Delta$ denote the [[simplex category]], and write $\Delta_{Top} \colon \Delta \to Top \colon [n] \mapsto \Delta^n_{Top}$ for the standard [[cosimplicial object|cosimplicial]] [[topological space]] of topological [[simplices]]. Write equivalently \begin{displaymath} Top^{\Delta^{op}} \coloneqq sTop \coloneqq [\Delta^{op}, Top] \end{displaymath} for the category of [[simplicial topological spaces]]. \begin{defn} \label{GeometricRealization}\hypertarget{GeometricRealization}{} For $X_\bullet \colon \Delta^{op} \to Top$ a [[simplicial topological space]], its \textbf{geometric realization} is the [[coend]] \begin{displaymath} {|X_\bullet|} \coloneqq \int^{n \in \Delta} X_n \times \Delta^n_{Top} \end{displaymath} formed in [[Top]]. \end{defn} This operation naturally extends to a [[functor]] \begin{displaymath} {|-|} \colon sTop \to Top \,. \end{displaymath} More explicitly, $\vert X_\bullet \vert$ is the [[topological space]] given by the [[quotient]] \begin{displaymath} {\vert X_\bullet \vert} = \coprod_{n} X_n \times \Delta^n_{Top} /\sim \end{displaymath} where the [[equivalence relation]] ``$\sim$'' identifies, for every morphism $[k] \to [l]$ in $\Delta$, the points $(x,f_* p) \in X_l \times \Delta^l_{Top}$ and $(f^* x,p) \in X_k \times \Delta^k_{Top}$. This form of geometric realization of simplicial topological spaces goes back to (\hyperlink{Segal68}{Segal68}). An early reference that realizes this construction as a [[coend]] is (\hyperlink{MacLane}{MacLane}). One also considers geometric realization after restricting to the subcategory $\Delta_+ \hookrightarrow \Delta$ of the [[simplex category]] on the strictly increasing maps (that is, the coface maps only---no codegeneracies). \begin{defn} \label{FatGeometricRealization}\hypertarget{FatGeometricRealization}{} The corresponding [[coend]] in [[Top]] is called the \textbf{fat geometric realization} \begin{displaymath} {\Vert X_\bullet\Vert} \coloneqq \int^{n \in \Delta_+} X_n \times \Delta^n_{Top} \,. \end{displaymath} \end{defn} This is called \emph{fat} , because it does not [[quotient]] out the [[relation]]s induced by the degeneracy maps and hence is ``bigger'' than ordinary geometric realization. Explicitly, this is the [[topological space]] given by the [[quotient]] \begin{displaymath} {\Vert X_\bullet \Vert} = \coprod_{n} X_n\times \Delta^n_{Top} /{\sim_+} \end{displaymath} where the [[equivalence relation]] ``$\sim_+$'' identifies $(x,f_* p) \in X_l\times \Delta^l_{Top}$ with $(f^* x,p) \in X_k\times \Delta^k_{Top}$ only when $[k] \to [l]$ is a coface map. \begin{example} \label{GeometricRealizationOfThePoint}\hypertarget{GeometricRealizationOfThePoint}{} The geometric realization of the point --- the [[simplicial topological space]] that is in each degree the 1-point topological space --- is [[homeomorphic]] to the point, but the fat geometric realization of the point is an ``infinite dimensional topological ball'': the [[terminal object|terminal]] morphism \begin{displaymath} {\vert * \vert} \stackrel{\simeq_{iso}}{\longrightarrow} * \end{displaymath} is an [[isomorphism]], but the morphism \begin{displaymath} {\Vert * \Vert} \stackrel{\simeq_{h.e.}}{\longrightarrow} * \end{displaymath} is just a [[homotopy equivalence]]. \end{example} \begin{remark} \label{}\hypertarget{}{} The ordinary geometric realization can be described as the [[tensor product of functors]] ${|X_\bullet|}=\Delta^\bullet \otimes_{\Delta} X_\bullet$, and the fat geometric realization can likewise be described as ${\Vert X_\bullet\Vert} = i^* \Delta^\bullet \otimes_{\Delta_+} i^* X_\bullet$, where $i\colon \Delta_+ \hookrightarrow \Delta$ is the inclusion. By general facts about tensor product of functors (essentially, the associativity of composition of [[profunctors]]), it follows that we can also write ${\Vert X_\bullet\Vert} \cong \Delta^\bullet \otimes_{\Delta} \Lan_i i^* X_\bullet \cong {| Lan_i i^* X_\bullet |}$. In other words, the fat geometric realization of $X_\bullet$ is the ordinary geometric realization of a ``fattened up'' version of $X_\bullet$, which is obtained by forgetting the degeneracy maps of $X_\bullet$ and then ``freely throwing in new ones.'' \end{remark} \hypertarget{reminder_on_nice_simplicial_topological_spaces}{}\subsection*{{Reminder on nice simplicial topological spaces}}\label{reminder_on_nice_simplicial_topological_spaces} Simplicial topological spaces are in [[homotopy theory]] presentations for certain [[topological ∞-groupoid]]s . In this context what matters is not the operation of geometric realization itself, but its [[derived functor]]. This is obtained by evaluating ordinary geometric realization on ``sufficiently nice'' [[resolution]]s of simplicial topological spaces. These we discuss now. Recall the following definitions and facts from [[nice simplicial topological space]]. \begin{defn} \label{GoodAndProper}\hypertarget{GoodAndProper}{} Let $X \colon \Delta^{op} \to Top$ be a [[simplicial topological space]]. Such $X$ is called \begin{itemize}% \item \textbf{good} if all the degeneracy maps $X_{n-1} \hookrightarrow X_n$ are all [[closed cofibration]]s; \item \textbf{proper} if the inclusion $s X_n \hookrightarrow X_n$ of the degenerate simplices is a [[closed cofibration]], where $s X_n = \bigcup_i s_i(X_{n-1})$. \end{itemize} Noticing that the union of degenerate simplices appearing here is a [[Reedy model structure|latching object]] and that closed cofibrations are cofibrations in the [[Strøm model structure]] on [[Top]], the last condition equivalently says: \begin{itemize}% \item $X_\bullet$ is \textbf{proper} if it is cofibrant in the [[Reedy model structure]] $[\Delta^{op}, Top_{Strom}]_{Reedy}$ on [[simplicial object]]s in [[Top]] with respect to the [[Strøm model structure]] on [[Top]]. \end{itemize} \end{defn} The notion of good simplicial topological space goes back to (\hyperlink{Segal73}{Segal73}), that of proper simplicial topological space to (\hyperlink{May}{May}). \begin{prop} \label{GoodImpliesProper}\hypertarget{GoodImpliesProper}{} A good simplicial topological space is proper: \begin{displaymath} (X_\bullet \; good) \Rightarrow (X_\bullet\; proper) \,. \end{displaymath} \end{prop} A proof appears as (\hyperlink{Lewis}{Lewis, corollary 2.4 (b)}). A generalization of this result to more general topological categories is (\hyperlink{RobertsStevenson}{RobertsStevenson, prop. 16}). \hypertarget{bisimplicial_sets_and_good_resolutions}{}\subsubsection*{{Bisimplicial sets and good resolutions}}\label{bisimplicial_sets_and_good_resolutions} We now discuss the [[resolution]] of any simplicial topological space by a good one. Write \begin{displaymath} ({\vert- \vert} \dashv Sing) \colon Top \stackrel{\overset{{|-|}}{\longleftarrow}}{\underset{Sing}{\longrightarrow}} sSet \end{displaymath} for the ordinary [[geometric realization]]/[[singular simplicial complex]] [[adjunction]] (see [[homotopy hypothesis]]). Recall that the composite ${|Sing(-)|}\colon Top\to Top$ is a cofibrant replacement functor: for any space $X$, the space ${|Sing(X)|}$ is a CW complex and comes with a natural map ${|Sing X|} \to X$ (the [[unit of an adjunction|counit]] of the adjunction $({|-|} \dashv Sing)$) which is a [[weak homotopy equivalence]]. \begin{prop} \label{GoodResolution}\hypertarget{GoodResolution}{} Let $X_\bullet$ be a simplicial topological space. Then the simplicial topological space \begin{displaymath} {|Sing(X_\bullet)|} \in [\Delta^{op}, Top] \,, \end{displaymath} obtained by applying ${|Sing(-)|} \colon Top \to Top$ degreewise, is good and hence proper. Moreover, we have a natural morphism \begin{displaymath} {|Sing X_\bullet|} \to X_\bullet \end{displaymath} which is degreewise a weak homotopy equivalence. \end{prop} \begin{proof} Each space $|Sing X_n|$ is a [[CW-complex]], hence in particular a [[locally equi-connected space]]. By (\hyperlink{Lewis}{Lewis, p. 153}) inclusions of [[retract]]s of locally equi-connected spaces are [[closed cofibration]]s, and since degeneracy maps are retracts, this means that the degeneracy maps in $|Sing X_\bullet|$ are closed cofibrations. The second sentence follows directly by the remarks above. \end{proof} Note that there is nothing special about ${|Sing(-)|}$ in the proof; any functorial CW replacement would do just as well (such as that obtained by the [[small object argument]]). However, ${|Sing(-)|}$ has the advantage that its geometric realization can be computed alternately in terms of diagonals of bisimplicial sets, as we now show. If $S_{\bullet,\bullet} \colon \Delta^{op} \times \Delta^{op} \to Set$ is a [[bisimplicial set]], we write $d S$ for its [[diagonal]], which is the composite \begin{displaymath} \Delta^{op} \to \Delta^{op} \times \Delta^{op} \stackrel{S}{\longrightarrow} Set. \end{displaymath} On the other hand, we can also consider a bisimplicial set as a simplicial object in $sSet$ and take its ``geometric realization'': \begin{displaymath} {|S_{\bullet,\bullet}|} \coloneqq \int^{n\in\Delta^{op}} S_{n,\bullet} \times \Delta^n_{sSet} \end{displaymath} where $\Delta^n_{sSet}$ denotes the $n$-simplex as a simplicial set, i.e. the representable functor $\Delta(-,[n])\colon \Delta^{op}\to Set$. \begin{lemma} \label{DiagonalIsRealization}\hypertarget{DiagonalIsRealization}{} For a bisimplicial set $S_{\bullet,\bullet}$, there is a natural isomorphism of simplicial sets $d S \cong {|S|}$. \end{lemma} \begin{proof} Both functors $d$ and ${|-|}$ are [[cocontinuous functor|cocontinuous]] functors between [[presheaf categories]] $Set^{\Delta^{op}\times\Delta^{op}} \to Set^{\Delta^{op}}$, so it suffices to verify that they agree on representables. The representable $(\Delta\times\Delta)(-,([n],[m]))$ is called a \emph{bisimplex} $\Delta^{n,m}$; its diagonal is \begin{displaymath} (d \Delta^{n,m})(-) = \Delta(-,n) \times \Delta(-,m) = \Delta^n_{sSet} \times \Delta^m_{sSet}. \end{displaymath} Now note that geometric realization of a bisimplicial set is left adjoint to the ``singular complex'' $Sing\colon sSet \to sSet^{\Delta^{op}}$ defined by \begin{displaymath} Sing(X_\bullet)(n,m) = \underline{Map}(\Delta^n_{sSet}, X_\bullet)_m = sSet(\Delta^n_{sSet} \times \Delta^m_{sSet}, X_\bullet) = sSet(d \Delta^{n,m}, X_\bullet) \end{displaymath} where $\underline{Map}(-,-)$ denotes the simplicial mapping space between two simplicial sets. But by the Yoneda lemma, $Sing(X_\bullet)(n,m) = sSet^{\Delta^{op}}(\Delta^{n,m},Sing(X_\bullet))$, so this shows that $d \Delta^{n,m}$ has the same universal property as ${|\Delta^{n,m}|}$; hence they are isomorphic. \end{proof} In particular, the lemma implies that for the two different ways of considering a bisimplicial set as a simplicial simplicial set (``vertically'' or ``horizontally''), the resulting ``geometric realizations'' as simplicial sets are isomorphic (since both are isomorphic to the diagonal, which is symmetrically defined). Note that Lemma \ref{DiagonalIsRealization} can be interpreted as an isomorphism between two [[profunctors]] $\Delta ⇸ \Delta\times\Delta$, of which the first is [[representable functor|representable]] by the diagonal functor $\Delta \to \Delta\times\Delta$. It follows that if $S_{\bullet,\bullet}$ is a bisimplicial object in any [[cocomplete category]], we also have \begin{displaymath} d S_{\bullet,\bullet} \cong \int^{n\in\Delta} S_{n,\bullet}\,\times \,(\Delta^n_{sSet})_{\bullet} \end{displaymath} where the right-hand side is a ``realization'' functor from bisimplicial objects to simplicial objects in any cocomplete category. On the other hand, if $S$ is a bisimplicial \emph{space}, then we also have the \emph{levelwise} realization \begin{displaymath} \int^{n\in\Delta} S_{n,\bullet} \,\times\, \Delta^n_{Top} \end{displaymath} which will not, in general, agree with the diagonal and the abstract realization considered above. It does agree, however, after we pass to a further geometric realization as a single topological space. \begin{prop} \label{RealizationOfDiagonalIsRealizationOfRealization}\hypertarget{RealizationOfDiagonalIsRealizationOfRealization}{} For $S_{\bullet,\bullet}$ any bisimplicial space, there is a [[homeomorphism]] between the geometric realizations of the following two simplicial spaces: (1) the diagonal $d S_{\bullet,\bullet}$ of $S$, and (2) the levelwise realization $|S_{\bullet,\bullet}|$ of $S$. \end{prop} \begin{proof} Applying Lemma \ref{DiagonalIsRealization} as above, we have \begin{displaymath} d S_{\bullet,\bullet} \cong \int^{n\in \Delta} S_{n,\bullet} \times \Delta^n_{sSet} \end{displaymath} If we then take the realization of these simplicial spaces, we find \begin{displaymath} {| d S_{\bullet,\bullet} |} \cong \left| \int^{n\in\Delta} S_{n,\bullet} \times \Delta^n_{sSet} \right| \cong \int^{n\in\Delta} {|S_{\bullet,\bullet}|} \times \Delta^n_{Top} \cong {\vert({\vert S_{\bullet,\bullet} \vert})\vert} \end{displaymath} using the fact that geometric realization of simplicial sets preserves colimits and products, and ${|\Delta^n_{sSet}|} = \Delta^n_{Top}$. \end{proof} This fact is attributed to Tornehave by Quillen on page 94 of his `Higher Algebraic K-theory I'. Finally, for any simplicial space $X_\bullet$, we have a bisimplicial set $Sing(X_\bullet)_\bullet$. Applying the previous proposition to this bisimplicial set, regarded as a discrete bisimplicial space, we find a homeomorphism \begin{displaymath} {\vert({\vert Sing(X_\bullet) \vert})\vert} \cong {| d Sing(X_\bullet)_\bullet |} \,. \end{displaymath} This also follows from results of (\hyperlink{Lewis}{Lewis}). Thus, as a resolution of $X_\bullet$, the levelwise realization of the levelwise singular complex ${\vert Sing(X_\bullet) \vert}$ has the pleasant property that its geometric realization, as a simplicial \emph{space}, can be calculated as the realization of a single simplicial \emph{set} (the diagonal of $Sing(X_\bullet)_\bullet$). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{remark} \label{}\hypertarget{}{} We have the following degenerate case of geometric realization of simplicial topological spaces. \begin{itemize}% \item If $X_\bullet \colon \Delta^{op} \to Set \hookrightarrow Top$ is a degreewise [[discrete space]], hence just a [[simplicial set]], the notion of geometric realization above coincides with the notion of [[geometric realization|geometric realization of simplicial sets]]. \item If $X_\bullet$ is simplicially constant on a topological space $X_0$, then its geometric realization is [[homeomorphic]] to that space: \begin{displaymath} {\vert X_\bullet \vert} \simeq X_0 \,. \end{displaymath} (This is not true for the fat geometric realization, only the ordinary one. The fat geometric realization will be homotopy equivalent to $X$.) \end{itemize} \end{remark} \begin{remark} \label{}\hypertarget{}{} Geometric realization of simplicial topological spaces has a [[right adjoint|right]] [[adjoint functor]] $\underline{Sing}$: \begin{displaymath} ({\vert - \vert} \dashv \underline{Sing}) \colon sTop \stackrel{\overset{{\vert - \vert}}{\longrightarrow}}{\underset{\underline{Sing}} {\longleftarrow}} Top \,, \end{displaymath} For $X \in$ [[Top]] a [[topological space]], we have by definition \begin{displaymath} \underline{Sing}(X) \colon [n] \mapsto [\Delta^n_{Top}, X] \,, \end{displaymath} where on the right we have the [[internal hom]], or [[exponential law for spaces|exponential]], space from the standard topological $n$-simplex to $X$. \end{remark} \begin{prop} \label{RealizationOfSingularComplexIsWHE}\hypertarget{RealizationOfSingularComplexIsWHE}{} For every $X \in Top$ there is a [[weak homotopy equivalence]] \begin{displaymath} {|\underline{Sing}(X)|} \to X \,. \end{displaymath} \end{prop} The proof can be found in [[Neil Strickland]]`s answer to this \href{http://mathoverflow.net/q/171662/381}{mathoverflow question}. (An incorrect argument appears as (\hyperlink{Seymour}{Seymour, prop. 3.1}) where it is claimed that $\underline{Sing}(X)$ is proper. In fact, the first degeneracy map $X \to [\Delta^1_{Top}, X]$ is not in general a cofibration as explained in the linked question.) Ordinary geometric realization has the following two disadvantages: \begin{prop} \label{RealizationDoesntPreserveMCofibrancyOrHEs}\hypertarget{RealizationDoesntPreserveMCofibrancyOrHEs}{} \begin{itemize}% \item If $X_\bullet$ has in each degree the [[homotopy type]] of a [[CW-complex]], its realization ${\vert X_\bullet \vert}$ in general need not. \item If a morphism $f \colon X_\bullet \to Y_\bullet$ is degreewise a [[homotopy equivalence]], its geometric realization ${\vert f \vert}$ need not be a homotopy equivalence. \end{itemize} \end{prop} See (\hyperlink{Segal74}{Segal74, appendix A}) This is different for the fat geometric realization. \begin{prop} \label{NicePropertiesOfFatRealization}\hypertarget{NicePropertiesOfFatRealization}{} \begin{itemize}% \item If $X_\bullet$ is degreewise of the [[homotopy type]] of a [[CW-complex]] (i.e. is degreewise [[m-cofibrant space|m-cofibrant]]), then so is ${\Vert X_\bullet \Vert}$. \item If $f \colon X_\bullet \to Y_\bullet$ is degreewise a [[homotopy equivalence]], then also ${\Vert f \Vert}$ is a homotopy equivalence. \end{itemize} \end{prop} This appears as (\hyperlink{Segal}{Segal74, prop. A.1}). \hypertarget{relation_between_fat_and_ordinary_geometric_realization}{}\subsubsection*{{Relation between fat and ordinary geometric realization}}\label{relation_between_fat_and_ordinary_geometric_realization} \begin{prop} \label{FatRealizationOfGoodSimplicialSpaces}\hypertarget{FatRealizationOfGoodSimplicialSpaces}{} If the simplicial topological space $X_\bullet$ is \hyperlink{GoodAndProper}{good} then the natural morphism from its \hyperlink{FatGeometricRealization}{fat geometric realization} to its \hyperlink{GeometricRealization}{ordinary geometric realization} is a [[homotopy equivalence]] \begin{displaymath} {\Vert X_\bullet \Vert} \stackrel{\simeq}{\longrightarrow} {|X_\bullet|} \,. \end{displaymath} \end{prop} A direct proof of this (not using that good implies proper) appears as (\hyperlink{Segal74}{Segal74, prop. A.1 (iv)}) and a more detailed proof has been given by Tammo tom Dieck. A recent paper treating the special case where $X_\bullet$ is the nerve of a [[topological category]], and each $X_n$ is of the [[homotopy type]] of a [[CW-complex]], is in (\hyperlink{Wang17}{Wang 2017}). \hypertarget{compatibility_with_limits}{}\subsubsection*{{Compatibility with limits}}\label{compatibility_with_limits} We discuss how geometric realization interacts with [[limit]]s of simplicial topological spaces. \hypertarget{ordinary_geometric_realization}{}\paragraph*{{Ordinary geometric realization}}\label{ordinary_geometric_realization} \begin{prop} \label{RealizationPreservesPullbacks}\hypertarget{RealizationPreservesPullbacks}{} Geometric realization preserves [[pullback]]s: for $X_\bullet \to Y_\bullet \leftarrow Z_\bullet$ a [[diagram]] in $Top^{\Delta^{op}}$ there are [[natural transformation|natural]] [[homeomorphism]]s \begin{displaymath} {|X_\bullet|} \,\times_{|Y_\bullet|}\, {|Z_\bullet|} \simeq {|X_\bullet \,\times_{Y_\bullet}\, Z_\bullet|} \,. \end{displaymath} \end{prop} This appears for instance as (\hyperlink{May}{May, corollary 11.6}). See also the proof that geometric realization of simplicial sets preserves pullbacks, at [[geometric realization]]. It is essential here that we are working in a category $Top$ such as compactly generated spaces or k-spaces: in the category of \emph{all} topological spaces this would not be true. It works in these cases because product and/or quotient topologies in these categories are slightly different from in the category of all topological spaces. \hypertarget{fat_geometric_realization}{}\paragraph*{{Fat geometric realization}}\label{fat_geometric_realization} The operation of \hyperlink{FatGeometricRealization}{fat geometric realization} does not preserve [[fiber product]]s on the nose, in general, but it does preserve all [[finite limit]]s up to [[homotopy]]. Write ${\Vert * \Vert}$ for the fat geometric realization of the point. Notice that due to the identification of $sTop$ with its [[overcategory]] over the point (the simplicial topological space constant on the point), $sTop\simeq sTop/*$, we may regard fat geometric gealization as a functor with values in the [[overcategory]] $Top/{\Vert*\Vert}$ over the \hyperlink{GeometricRealizationOfThePoint}{fat geometric realization of the point}. \begin{prop} \label{FatRealizationPreservesConnectedFiniteLimits}\hypertarget{FatRealizationPreservesConnectedFiniteLimits}{} The functor \begin{displaymath} {\Vert - \Vert} \colon Top^{\Delta^{op}} \to Top/{\Vert*\Vert} \end{displaymath} preserves all [[finite limit]]s. \end{prop} See (\hyperlink{GepnerHenriques07}{Gepner-Henriques 07, Remark 2.23}). \hypertarget{RelationToHomotopyColimit}{}\subsubsection*{{Relation to the homotopy colimit}}\label{RelationToHomotopyColimit} Recall that a simplicial topological space is proper if it is Reedy cofibrant relative to the [[Strøm model structure]] on [[Top]], in which the weak equivalences are the honest [[homotopy equivalences]]. Nevertheless, in certain cases geometric realisation computes the [[homotopy colimit]] of the [[diagram]] $X_\bullet \colon \Delta^{op} \to Top$ given by the simplicial space, with respect to the standard [[Quillen model structure on topological spaces]] in which the weak equivalences are the [[weak homotopy equivalences]]. \begin{lemma} \label{RealizPresWHE}\hypertarget{RealizPresWHE}{} If $X_\bullet \to Y_\bullet$ is an objectwise weak homotopy equivalence between proper simplicial spaces, then the induced map ${|X_\bullet|} \to {|Y_\bullet|}$ is a weak homotopy equivalence. \end{lemma} \begin{proof} The following proof is essentially from (\hyperlink{May_Einf}{May74, A.4}); see also (\hyperlink{Dugger}{Dugger, prop. 17.4, example 18.2}). It relies on two facts relating [[Hurewicz cofibration]]s to [[weak homotopy equivalence]]s: \begin{enumerate}% \item [[pushout|Pushouts]] along [[Hurewicz cofibration]]s preserve [[weak homotopy equivalence]]s, and \item [[colimit|Colimits]] of sequences of Hurewicz cofibrations preserve weak homotopy equivalences. \end{enumerate} Let $i_n \colon \Delta_{\le n} \hookrightarrow \Delta$ denote the inclusion of the objects $\le n$, and write ${|X_\bullet|}_n = i_n^* \Delta \otimes_{\Delta_{\le n}} i_n^* X_\bullet$. Writing $L_n X$ for the $n$th [[latching object]] (the subspace of degeneracies in $X_n$), we have pushouts \begin{displaymath} \itexarray{ (L_n X \times \Delta^n) \sqcup_{L_n X \times \partial\Delta^n} (X_n \times \partial\Delta^n) & \to & {|X_\bullet|}_{n-1}\\ \downarrow & & \downarrow\\ X_n \times \Delta^n & \to & {|X_\bullet|}_n } \end{displaymath} Since $X$ is proper, $L_n X \to X_n$ is a cofibration, and of course $\partial\Delta^n \to \Delta^n$ is a cofibration. Thus, by the [[pushout-product axiom]] for the [[Strøm model structure]], the left-hand vertical map is a cofibration; hence so is the right-hand vertical map. Now ${|X_\bullet|}$ is the [[colimit]] of the sequence of cofibrations \begin{displaymath} {|X_\bullet|}_0 \to {|X_\bullet|}_1 \to {|X_\bullet|}_2 \to \cdots \end{displaymath} and likewise for ${|Y_\bullet|}$. In other words, the geometric realization is [[filtration|filtered]] by simplicial degree. Thus, by point (2) above, it suffices to show that each map ${|X_\bullet|}_n \to {|Y_\bullet|}_n$ is a weak homotopy equivalence. Since ${|X_\bullet|}_0 = X_0$, this is true for $n=0$. Moreover, by the above pushout square, ${|X_\bullet|}_n$ is a pushout of ${|X_\bullet|}_{n-1}$ along a cofibration. Thus, by point (1) above, since $X_n \times \Delta^n \to Y_n \times \Delta^n$ is certainly a weak homotopy equivalence, it will suffice for an induction step to prove that \begin{displaymath} (L_n X \times \Delta^n) \sqcup_{L_n X \times \partial\Delta^n} (X_n \times \partial\Delta^n) \to (L_n Y \times \Delta^n) \sqcup_{L_n Y \times \partial\Delta^n} (Y_n \times \partial\Delta^n) \end{displaymath} is a weak homotopy equivalence. However, by definition we have a pushout \begin{displaymath} \itexarray{ L_n X \times \partial\Delta^n & \to & X_n \times \partial\Delta^n \\ \downarrow & & \downarrow\\ L_n X \times \Delta^n & \to & (L_n X \times \Delta^n) \sqcup_{L_n X \times \partial\Delta^n} (X_n \times \partial\Delta^n) } \end{displaymath} This is also a pushout along a Hurewicz cofibration, and cartesian product preserves weak homotopy equivalences, so it will suffice to show that $L_n X \to L_n Y$ is a weak homotopy equivalence. Recall that $L_n X$ can be written as $\colim^{[n]\to [k]} X_{[k]}$, where the colimit is over all codegeneracy maps $[n]\to [k]$ in $\Delta$ \emph{except} the identity $[n] \to [n]$. For $0\le m \le n$, write $L^m_n X$ for the corresponding colimit over all codegeneracies which factor through $\sigma_{p}\colon [n]\to [n-1]$ for some $0\le p\le m$. Then $L^0_n X = X_{n-1}$ and $L^n_n X = L_n X$, and for $0\lt m \le n$ we have a pushout square \begin{displaymath} \itexarray{ L^{m-1}_{n-1} X & \to & L^{m-1}_n X \\ \downarrow & & \downarrow \\ X_{n-1} & \to & L^m_n X. } \end{displaymath} We claim that $L^{m-1}_n X \to L^m_n X$ is a cofibration for all $0\le m \le n$, and we prove it by induction on $n$. For $n=0$ it is obvious. If it holds for $(n-1)$ (and all $m$ with $0\le m \le n-1$), then by composition and properness of $X$, each map $L^{m-1}_{n-1} X \to X_{n-1}$ is a cofibration. Hence, by the above pushout square, so is $L^{m-1}_n X \to L^m_n X$. This proves the claim. Now, using the above pushout square again and point (1) above, we can prove by induction on $n$, and for fixed $n$, by induction on $m$, that each map $L^m_n X \to L^m_n Y$ is a weak homotopy equivalence. In particular, taking $m=n$, we find that $L_n X \to L_n Y$ is a weak homotopy equivalence, as desired. \end{proof} Recall that one way to compute the homotopy colimit of a diagram $X\colon D^{op}\to Top$, with respect to the standard (Quillen) model structure, is as the tensor product \begin{displaymath} hocolim X \coloneqq N(D/ -) \otimes_D Q X, \end{displaymath} where $(D/ -)\colon D \to Cat$ sends each object of $D$ to its [[overcategory]], $N$ denotes the [[nerve]] of a small category, and $Q$ denotes a functorial cofibrant replacement in the [[Quillen model structure on topological spaces]] (e.g. [[CW complex|CW]] replacement via singular [[nerve and realization]]). When $D=\Delta$, there is a canonically defined map $N(\Delta / -) \to \Delta$ (where the second $\Delta$ denotes the canonical cosimplicial simplicial set) called the [[Bousfield-Kan map]]. This map induces, for each simplicial space $X$, a map \begin{displaymath} N(D/ -) \otimes_D X_\bullet \to \Delta \otimes_{\Delta} X_\bullet = {|X_\bullet|} \end{displaymath} which is also called the \textbf{Bousfield-Kan map}. Since the Str\o{}m model structure is a [[simplicial model category]], standard arguments involving Reedy model structures imply that the Bousfield-Kan map is a Str\o{}m weak equivalence (i.e. a homotopy equivalence) whenever $X$ is Str\o{}m Reedy cofibrant (i.e. proper). Thus we have: \begin{prop} \label{RealizationOfGoodSimplicialSpacesIsHomotopyColimit}\hypertarget{RealizationOfGoodSimplicialSpacesIsHomotopyColimit}{} Let $X_\bullet$ be a proper simplicial space. Then the composite \begin{displaymath} \hocolim X_\bullet = N(D/ -) \otimes_D Q X_\bullet \xrightarrow{Bousfield-Kan} {|Q X_\bullet|} \longrightarrow {|X_\bullet|} \end{displaymath} is a weak homotopy equivalence. \end{prop} \begin{proof} Since the definition of $\hocolim$ doesn't depend on the choice of an objectwise-cofibrant replacement of $X$, we may as well take $Q$ to be, instead of the composite with a functorial cofibrant replacement in $Top_{Quillen}$, rather a cofibrant replacement in the Reedy model structure on $Top^{\Delta^{op}}$ with respect to the Quillen model structure on $Top$. (Any Reedy cofibrant diagram is in particular objectwise cofibrant.) Then $Q X_\bullet$ is Quillen-Reedy cofibrant, hence also proper, and so the Bousfield-Kan map is a homotopy equivalence. On the other hand, $Q X_\bullet \to X_\bullet$ is a levelwise weak homotopy equivalence, while $Q X_\bullet$ and $X_\bullet$ are proper, so by Lemma \ref{RealizPresWHE} its realization is a weak homotopy equivalence. \end{proof} By naturality, the above composite is also equal to the composite \begin{displaymath} \hocolim X_\bullet = N(D/ -) \otimes_D Q X_\bullet \to N(D/ -) \otimes_D X_\bullet \xrightarrow{Bousfield-Kan} {|X_\bullet|}; \end{displaymath} hence this composite is also a weak homotopy equivalence. \hypertarget{examples_and_applications}{}\subsection*{{Examples and Applications}}\label{examples_and_applications} \hypertarget{TopologicalPrincipalInfinityBundle}{}\subsubsection*{{Topological principal $\infty$-bundles}}\label{TopologicalPrincipalInfinityBundle} We discuss aspects of [[principal ∞-bundle]]s equipped with topological [[cohesive (∞,1)-topos|cohesion]] and their geometric realization to [[principal bundle]]s in [[Top]]. For $X,Y \in sTop$, write \begin{displaymath} sTop(X,Y) \coloneqq \int_{[k] \in \Delta} [X_k, Y_k] \;\; \in Top \end{displaymath} for the [[Top]]-[[hom-object]], where in the integrand of the [[end]] $[-,-] \colon Top^{op} \times Top^{op} \to Top$ is the [[internal hom]] of topological spaces. \begin{defn} \label{GloballyKanSimplicialTopologicalSpace}\hypertarget{GloballyKanSimplicialTopologicalSpace}{} We say a morphism $f \colon X \to Y$ of [[simplicial topological space]]s is a \textbf{global Kan fibration} if for all $n \in \mathbb{N}$ and $0 \leq i \leq n$ the canonical morphism \begin{displaymath} X_n \to Y_n \;\times_{sTop(\Lambda[n]_i, Y)}\; sTop(\Lambda[n]_i, X) \end{displaymath} in [[Top]] has a [[section]], where $\Lambda[n]_i \in$ [[sSet]] $\hookrightarrow Top^{\Delta^{op}}$ is the $i$th $n$-[[horn]] regarded as a [[discrete space|discrete]] [[simplicial topological space]]. We say a [[simplicial topological space]] $X_\bullet \in Top^{\Delta^{op}}$ is \textbf{(global) Kan simplicial space} if the unique morphism $X_\bullet \to *$ is a global Kan fibration, hence if for all $n \in \mathbb{N}$ and all $0 \leq i \leq n$ the canonical [[continuous function]] \begin{displaymath} X_n \to sTop(\Lambda[n]_i, X) \end{displaymath} into the [[topological space]] of $i$th $n$-[[horn]]s admits a [[section]] (in [[Top]], hence a global, continuous section). \end{defn} \begin{remark} \label{}\hypertarget{}{} This global notion of topological Kan fibration is considered in (\hyperlink{BrownSzczarba}{BrownSzczarba, def. 2.1, def. 6.1}). In fact there a stronger condition is imposed: a [[Kan complex]] in [[Set]] automatically has the lifting property not only against all full [[horn]] inclusions but also against sub-horns; and in (\hyperlink{BrownSzczarba}{BrownSzczarba}) all these fillers are required to be given by global sections. This ensures that with $X$ globally Kan also the [[internal hom]] $[Y,X] \in sTop$ is globally Kan, for any simplicial topological space $Y$. This is more than we need and want to impose here. For our purposes it is sufficient to observe that if $f$ is globally Kan in the sense of (\hyperlink{BrownSzczarba}{BrownSzczarba, def. 6.1}), then it is so also in the \hyperlink{GloballyKanSimplicialTopologicalSpace}{above sense}. \end{remark} Recall from the discussion at [[universal principal ∞-bundle]] that for $G$ a [[simplicial topological group]] the [[universal simplicial principal bundle]] $\mathbf{E}G \to \mathbf{B}G$ is presented by the morphism of [[simplicial topological space]]s traditionally denoted $W G \to \bar W G$. \begin{prop} \label{SimplicialTopologicalUniversalBundle}\hypertarget{SimplicialTopologicalUniversalBundle}{} Let $G$ be a [[simplicial topological group]]. Then \begin{enumerate}% \item $G$ is a globally Kan simplicial topological space; \item $\bar W G$ is a globally Kan simplicial topological space; \item $W G \to \bar W G$ is a global Kan fibration. \end{enumerate} \end{prop} \begin{proof} The first statement appears as (\hyperlink{BrownSzczarba}{BrownSzczarba, theorem 3.8}), the second is noted in (\hyperlink{RobertsStevenson}{RobertsStevenson}), the third appears as (\hyperlink{BrownSzczarba}{BrownSzczarba, lemma 6.7}). \end{proof} \begin{prop} \label{BarWGIsGoodIfGIsWellSectioned}\hypertarget{BarWGIsGoodIfGIsWellSectioned}{} If $G$ is a [[well-pointed simplicial topological group]] then both $W G$ and $\bar W G$ are \hyperlink{GoodAndProper}{good simplicial topological space}. \end{prop} For $\bar W G$ this is (\hyperlink{RobertsStevenson}{RobertsStevenson, prop. 19}). For $W G$ this follows with (\hyperlink{RobertsStevenson}{RobertsStevenson, lemma 10, lemma 11}) which says that $W G = Dec_0 \bar W G$ and the observations in the proof of (\hyperlink{RobertsStevenson}{RobertsStevenson, prop. 16}) that $Dec_0 X$ is good if $X$ is. \begin{prop} \label{RealizationSimplicialTopologicalUniversalBundle}\hypertarget{RealizationSimplicialTopologicalUniversalBundle}{} For $G$ a [[well-pointed simplicial topological group]], the geometric realization of the [[universal simplicial principal bundle]] $W G \to \bar W G$ \begin{displaymath} {\vert W G \vert} \to {\vert \bar W G \vert} \end{displaymath} is a fibration [[resolution]] in $Top_{Quillen}$ of the point inclusion $* \to B{|G|}$ into the [[classifying space]] of the geometric realization of $G$. \end{prop} This is (\hyperlink{RobertsStevenson}{RobertsStevenson, prop. 14}). \begin{prop} \label{SimplicialTopolgicalBundleIsGood}\hypertarget{SimplicialTopolgicalBundleIsGood}{} Let $X_\bullet$ be a \hyperlink{GoodAndProper}{good} [[simplicial topological space]] and $G$ a [[well-pointed simplicial topological group]]. Then for every morphism \begin{displaymath} \tau \colon X \to \bar W G \end{displaymath} the corresponding topological [[simplicial principal bundle]] $P$ over $X$ is itself a good simplicial topological space. \end{prop} \begin{proof} The bundle is the [[pullback]] $P = X \times_{\bar W G} W G$ in $sTop$ \begin{displaymath} \itexarray{ P &\to& \bar W G \\ \downarrow && \downarrow \\ X &\stackrel{\tau}{\to}& \bar W G } \,. \end{displaymath} By assumption on $X$ and $G$ and using prop. \ref{BarWGIsGoodIfGIsWellSectioned} we have that $X$, $\bar W G$ and $W G$ are all good simplicial spaces. This means that the degeneracy maps of $P_\bullet$ are induced degreewise by morphisms between pullbacks in [[Top]] that are degreewise [[closed cofibration]]s, where one of the morphisms in each pullback is a fibration. By the properties discussed at [[closed cofibration]], this implies that also these degeneracy maps of $P_\bullet$ are closed cofibrations. \end{proof} Let for the following $Top_s \hookrightarrow Top$ be any [[small category|small]] [[full subcategory]]. \begin{defn} \label{SimpTopAsSimpPresheaves}\hypertarget{SimpTopAsSimpPresheaves}{} Under the degreewise [[Yoneda embedding]] $sTop_s \hookrightarrow [Top_s^{op}, sSet]$ simplicial topological spaces embed into the category of [[simplicial presheaves]] on $Top_s$. We equip this with the projective [[model structure on simplicial presheaves]] $[Top_s^{op}, sSet]_{proj}$, and we speak of [[homotopy limit]]s in $sTop$ under this embedding. \end{defn} \begin{prop} \label{GlobalKanFibImpliesProjectiveFib}\hypertarget{GlobalKanFibImpliesProjectiveFib}{} Under this embedding a \hyperlink{GloballyKanSimplicialTopologicalSpace}{global Kan fibration} $f \colon X \to Y$ in $sTop_s$ maps to a fibration in $[Top_s^{op}, sSet]_{proj}$. \end{prop} \begin{proof} By definition, a morphism $f \colon X \to Y$ in $[Top_s^{op}, sSet]_{proj}$ is a fibration if for all $U \in Top$ and all $n \in \mathbb{N}$ and $0 \leq i \leq n$ diagrams of the form \begin{displaymath} \itexarray{ \Lambda[n]_i \cdot U &\to& X \\ \downarrow && \downarrow^{\mathrlap{f}} \\ \Delta[n] \cdot U &\to& Y } \end{displaymath} have a lift. This is equivalent to saying that the [[function]] \begin{displaymath} Hom(\Delta[n]\cdot U, X) \to Hom(\Delta[n]\cdot U,Y) \times_{Hom(\Lambda[n]_i \cdot U, Y)} Hom(\Lambda[n]_i \cdot U, X) \end{displaymath} is surjective. Notice that we have \begin{displaymath} \begin{aligned} Hom_{[Top_s^{op}, sSet]}(\Delta[n]\cdot U, X) & = Hom_{sTop}(\Delta[n]\cdot U, X) \\ & = \int_{[k] \in \Delta} Hom_{Top}( \Delta[n]_k \times U, X_k) \\ & = \int_{[k] \in \Delta} Hom_{Top}(U, [\Delta[n]_k, X_k]) \\ & = Hom_{Top}(U, \int_{[k] \in \Delta} [\Delta[n]_k, X_k]) \\ & = Hom_{Top}(U, sTop(\Delta[n], X)) \\ & = Hom_{Top}(U, X_n) \end{aligned} \end{displaymath} and analogously for the other factors in the above morphism. Therefore the lifting problem equivalently says that the function \begin{displaymath} Hom_{Top}(U, \; X_n \to Y_n \times_{sTop(\Lambda[n]_i, Y)} sTop(\Lambda[n]_i,X) \;) \end{displaymath} is surjective. But by the assumption that $f \colon X \to Y$ is a global Kan fibration of simplicial topological spaces, def. \ref{GloballyKanSimplicialTopologicalSpace}, we have a section $\sigma \colon Y_n \times_{sTop(\Lambda[n]_i), Y} sTop(\Lambda[n]_i,X) \to X_n$. Therefore $Hom_{Top}(U, \sigma)$ is a section of our function. \end{proof} \begin{prop} \label{HocolimPreservesHomotopyFibers}\hypertarget{HocolimPreservesHomotopyFibers}{} The [[homotopy colimit]] operation \begin{displaymath} sTop \hookrightarrow [Top_s^{op}, sSet]_{proj} \stackrel{hocolim}{\to} Top_{Quillen} \end{displaymath} preserves [[homotopy fiber]]s of morphisms $\tau \colon X \to \bar W G$ with $X$ good and globally Kan and $G$ well-pointed. \end{prop} \begin{proof} By prop. \ref{SimplicialTopologicalUniversalBundle} and prop. \ref{GlobalKanFibImpliesProjectiveFib} we have that $W G \to \bar W G$ is a fibration [[resolution]] of the point inclusion $* \to \bar W G$ in $[Top^{op}, sSet]_{proj}$. By the general discussion at [[homotopy limit]] this means that the [[homotopy fiber]] of a morphism $\tau \colon X \to \bar W G$ is computed as the ordinary [[pullback]] $P$ in \begin{displaymath} \itexarray{ P &\to& W G \\ \downarrow && \downarrow \\ X &\stackrel{\tau}{\to}& \bar W G } \end{displaymath} (since all objects $X$, $\bar W G$ and $W G$ are fibrant and at least one of the two morphisms in the pullback diagram is a fibration) and hence \begin{displaymath} hofib(\tau) \simeq P \,. \end{displaymath} By prop. \ref{SimplicialTopologicalUniversalBundle} and prop. \ref{SimplicialTopolgicalBundleIsGood} it follows that all objects here are good simplicial topological spaces. Therefore by prop. \ref{RealizationOfGoodSimplicialSpacesIsHomotopyColimit} we have \begin{displaymath} hocolim P_\bullet \simeq {|P_\bullet|} \end{displaymath} in [[Ho(Top)]]. By prop. \ref{RealizationPreservesPullbacks} we have that \begin{displaymath} \cdots = {|X_\bullet|} \times_{|\bar W G|} {|W G|} \,. \end{displaymath} But prop. \ref{RealizationSimplicialTopologicalUniversalBundle} says that this is again the presentation of a homotopy pullback/homotopy fiber by an ordinary pullback \begin{displaymath} \itexarray{ {|P|} &\to& {|W G|} \\ \downarrow && \downarrow \\ {|X|} &\stackrel{\tau}{\to}& {|\bar W G|} } \,, \end{displaymath} because $|W G| \to |\bar W G|$ is again a fibration resolution of the point inclusion. Therefore \begin{displaymath} hocolim P_\bullet \simeq hofib( {|\tau|} ) \,. \end{displaymath} Finally by prop. \ref{RealizationOfGoodSimplicialSpacesIsHomotopyColimit} and using the assumption that $X$ and $\bar W G$ are both good, this is \begin{displaymath} \cdots \simeq hofib (hocolim \tau) \,. \end{displaymath} In total we have shown \begin{displaymath} hocolim (hofib \tau) \simeq hofib (hocolim \tau) \,. \end{displaymath} \end{proof} \hypertarget{ClassifyingSpaces}{}\subsubsection*{{Classifying spaces}}\label{ClassifyingSpaces} For $G$ a [[topological group]], write $\mathbf{B}G$ for its [[delooping]] [[topological groupoid]]: the topological groupoid with a single object and $Mor_{\mathbf{B}G}(*,*) \coloneqq G$, with composition given by the product on $G$. The [[nerve]] $N \mathbf{B}G$ of this topological groupoid is naturally a [[simplicial topological space]], with \begin{displaymath} N \mathbf{B}G \colon [n] \mapsto G^{\times_n} \,. \end{displaymath} \begin{prop} \label{ClassifyingSpaceByGeometricRealization}\hypertarget{ClassifyingSpaceByGeometricRealization}{} The geometric realization of $N \mathbf{B}G$ is a model for the [[classifying space]] $B G$ of $G$-[[principal bundle]]s \begin{displaymath} {|N \mathbf{B}G|} \simeq B G \,. \end{displaymath} \end{prop} An early reference for this classical fact is (\hyperlink{Segal68}{Segal68}). \begin{cor} \label{OmegaBGisaWHE}\hypertarget{OmegaBGisaWHE}{} Let $G$ be a [[well-pointed simplicial topological group|well-pointed]] [[topological group]], $B G$ its [[classifying space]] and $\Omega B G$ the [[loop space]] of the classifying space. There is a [[weak homotopy equivalence]] \begin{displaymath} \Omega B G \stackrel{\simeq}{\to} G \,. \end{displaymath} \end{cor} \begin{proof} By prop. \ref{ClassifyingSpaceByGeometricRealization} we have that $B G \simeq |\mathbf{B}G|$ (we suppress the [[nerve]] operation notationally, which injects [[groupoid]]s into [[∞-groupoid]]s). By standard facts about the $\bar W$-functor (see [[simplicial principal bundle]]) we have a [[pullback]] square of [[simplicial topological space]]s \begin{displaymath} \itexarray{ G &\to& W G \\ \downarrow && \downarrow \\ * &\to& \bar W G } \end{displaymath} exhibiting the [[homotopy pullback]] \begin{displaymath} \itexarray{ G &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow \\ * &\to& \mathbf{B}G } \,. \end{displaymath} Under geoemtric realization this maps to \begin{displaymath} \itexarray{ G &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow \\ * &\to& B G } \end{displaymath} in [[Top]]. By prop \ref{HocolimPreservesHomotopyFibers} this is still a homotopy pullback, and hence exhibits $G$ as the [[loop space]] of $B G$. \end{proof} \hypertarget{CechNerves}{}\subsubsection*{{Cech nerves}}\label{CechNerves} \begin{prop} \label{RealizationOfCechNerveIsWHE}\hypertarget{RealizationOfCechNerveIsWHE}{} Let $X,Y$ be [[topological space]]s and $\pi \colon Y \to X$ a [[continuous function]] that admits local [[section]]s. Write $C(\pi) \in sTop$ for the [[Cech nerve]]. Then the canonical map \begin{displaymath} {|C(\pi)|} \to X \end{displaymath} from the geometric realization of $X$ back to $X$ is a [[weak homotopy equivalence]]. If $X$ is a [[paracompact topological space]] then it is even a [[homotopy equivalence]]. \end{prop} For paracompact $X$ this goes back to (\hyperlink{Segal68}{Segal68}). The general case is discussed in (\hyperlink{DuggerIsaksen}{DuggerIsaksen}). A generalization to parameterized spaces is in (\hyperlink{RobertsStevenson}{RobertsStevenson, lemma 22}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[simplicial topological space]], [[nice simplicial topological space]] \item [[simplicial topological group]] \item [[geometric realization]] \begin{itemize}% \item [[geometric realization of categories|of categories]], \textbf{of simplicial topological spaces}, [[geometric realization of cohesive ∞-groupoids|of cohesive ∞-groupoids]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_2}{}\subsubsection*{{General}}\label{general_2} The first occurence of the definition of geometric realization of simplicial topological spaces seems to be \begin{itemize}% \item [[Graeme Segal]], \emph{Classifying spaces and spectral sequences} Publications Math\'e{}matiques de l'IH\'E{}S, 34 (1968), p. 105-112 (\href{http://www.numdam.org/item?id=PMIHES_1968__34__105_0}{numdam}) \end{itemize} but the construction was implicit in earlier discussion of [[classifying space]]s. The observation that this is a [[coend]] was noted in \begin{itemize}% \item [[Saunders MacLane]], \emph{The Milgram bar construction as a tensor product of functors} SLNM Vol. 168 (1970) \end{itemize} The definition of \emph{good} simplicial topological spaces goes back to \begin{itemize}% \item [[Graeme Segal]], \emph{Configuration-Spaces and Iterated Loop-Spaces} , Inventiones math. 21,213-221 (1973) \end{itemize} An original reference on geometric realization of simplicial topological spaces is is appendix A of \begin{itemize}% \item [[Graeme Segal]], \emph{[[SegalCategoriesAndCohomologyTheories.pdf:file]]} Topology, 13:293--312, 1974 \end{itemize} A proof that ordinary and fat geometric realisation give homotopic spaces, for the special case of the nerve of a topological category is in \begin{itemize}% \item Yi-Sheng Wang, \emph{Fat realization and Segal's classifying space}, arXiv:\href{https://arxiv.org/abs/1710.03796}{1710.03796} \end{itemize} A standard textbook reference is chapter 11 of \begin{itemize}% \item [[Peter May]], \emph{The geometry of iterated loop spaces} (\href{}{pdf}) \end{itemize} A proof that good simplicial spaces are proper is implicit in the proof of lemma A.5 in (\hyperlink{Segal74}{Segal74}). Explicitly it appears in \begin{itemize}% \item L. Gaunce Lewis Jr., \emph{When is the natural map $X\to \Omega \Sigma X$ a cofibration?} , Trans. Amer. Math. Soc. \textbf{273} (1982) no. 1, 147--155 (\href{.org/pss/1999197}{JSTOR}) \end{itemize} A generalization of the statement that good implies proper to other [[topological concrete categories]] and a discussion of the geometric realization of $W G \to \bar W G$ for $G$ a [[simplicial topological group]] is in \begin{itemize}% \item [[David Roberts]], [[Danny Stevenson]], \emph{Simplicial principal bundle in parameterized spaces} (\href{http://arxiv.org/abs/1203.2460}{arXiv:1203.2460}) \item [[Danny Stevenson]], \emph{Classifying theory for simplicial parametrized groups} (\href{http://arxiv.org/abs/1203.2461}{arXiv:1203.2461}) \end{itemize} Comments on the relation between properness and cofibrancy in the [[Reedy model structure]] on $[\Delta^{op}, Set]$ are made in \begin{itemize}% \item [[Paul Goerss]], [[Kristen Schemmerhorn]], \emph{Model Categories and Simplicial Methods} (\href{http://www.math.northwestern.edu/~pgoerss/papers/ucnotes.pdf}{pdf}). \end{itemize} The relation between (fat) geometric realization and [[homotopy colimit]]s is considered as prop. 17.5 and example 18.2 of \begin{itemize}% \item [[Daniel Dugger]], \emph{A primer on homotopy colimits} (\href{http://pages.uoregon.edu/ddugger/hocolim.pdf}{pdf}) \end{itemize} The proof that geometric realization of proper simplicial spaces preserves weak equivalences is from \begin{itemize}% \item [[Peter May]], \emph{$E_\infty$-spaces, group completions, and permutative categories}. London Math. Soc. Lecture Notes No. 11, 1974, 61-93. \end{itemize} A definition of the Bousfield-Kan map, and the Reedy model category theory necessary to show that it is a weak equivalence, can be found in \begin{itemize}% \item Hirschhorn, \emph{Model categories and their localizations}, AMS Mathematical Surveys and Monographs No. 99, 2003 \end{itemize} The (fat) geometric realization of ([[nerves]] of) [[topological groupoid]]s is discussed in section 2.3 of \begin{itemize}% \item [[David Gepner]], [[André Henriques]], \emph{Homotopy theory of orbispaces} (\href{https://arxiv.org/abs/math/0701916}{arXiv:math/0701916}) \end{itemize} See also \begin{itemize}% \item [[David Carchedi]], section 3.2 of \emph{On The Homotopy Type of Higher Orbifolds and Haefliger Classifying Spaces} (\href{http://arxiv.org/abs/1504.02394}{arXiv:1504.02394}) \end{itemize} Globally Kan simplicial spaces are considered in \begin{itemize}% \item E. H. Brown and R. H. Szczarba, \emph{Continuous cohomology and real homotopy type} , Trans. Amer. Math. Soc. 311 (1989), no. 1, 57 (\href{http://www.ams.org/journals/tran/1989-311-01/S0002-9947-1989-0929667-6/S0002-9947-1989-0929667-6.pdf}{pdf}) \end{itemize} The right adjoint to geometric realization of simplicial topological spaces is discussed in \begin{itemize}% \item R. M. Seymour, \emph{Kan fibrations in the category of simplicial spaces} Fund. Math., 106(2):141-152, 1980. \end{itemize} Geometric realization of general [[Cech nerve]]s is discussed in \begin{itemize}% \item [[Dan Dugger]], D. C. Isaksen, \emph{Topological hypercovers and $\mathbb{A}^1$- realizations, Math. Z. 246 (2004) no. 4} \end{itemize} \hypertarget{ReferencesCompatibilityHomotopyPullback}{}\subsubsection*{{(Non-)Compatibility with homotopy pullbacks}}\label{ReferencesCompatibilityHomotopyPullback} Discussion of sufficient conditions for geometric realization to be compatible with [[homotopy pullbacks]]: \begin{itemize}% \item D. Anderson, \emph{Fibrations and geometric realization} , Bull. Amer. Math. Soc. Volume 84, Number 5 (1978), 765-788. (\href{http://projecteuclid.org/euclid.bams/1183541139}{euclid:1183541139}) \item [[Charles Rezk]], \emph{When are homotopy colimits compatible with homotopy base change?}, 2014 (\href{https://faculty.math.illinois.edu/~rezk/i-hate-the-pi-star-kan-condition.pdf}{pdf}, [[RezkHomotopyColimitsBaseChange.pdf:file]]) \item Edoardo Lanari, \emph{Compatibility of homotopy colimits and homotopy pullbacks of simplicial presheaves} (\href{http://algant.eu/documents/theses/lanari.pdf}{pdf}, [[LanariHomotopyColimitsBaseChange.pdf:file]]) (expanded version of \hyperlink{Rezk14}{Rezk 14}) \end{itemize} [[!redirects geometric realization of a simplicial space]] [[!redirects geometric realization of a simplicial topological space]] [[!redirects geometric realization of simplicial spaces]] [[!redirects fat geometric realization of simplicial spaces]] [[!redirects fat geometric realization of simplicial topological spaces]] [[!redirects fat geometric realization of a simplicial space]] [[!redirects fat geometric realization of a simplicial topological space]] [[!redirects fat geometric realization]] [[!redirects fat realization]] \end{document}