\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometric stability theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{basic_concepts}{Basic concepts}\dotfill \pageref*{basic_concepts} \linebreak \noindent\hyperlink{minimal_and_strongly_minimal_sets}{Minimal and strongly minimal sets}\dotfill \pageref*{minimal_and_strongly_minimal_sets} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Geometric stability theory} is the principal part of the branch of [[model theory]] called \textbf{[[geometric model theory]]}. It was introduced in works of [[Boris Zilber]], Gregory Cherlin, [[Ehud Hrushovski]], Anand Pillay, and others. Geometric stability theory has largely to do with the model-theoretic classification of [[structure in model theory|structures]] in terms of dimension-like quantities that can be axiomatized in terms of notions of [[combinatorial geometry]] such as [[matroid]]. Key guiding examples include [[vector spaces]] and [[algebraically closed fields]], and many of the guiding concepts have an [[algebraic geometry|algebro-geometric]] flavor (e.g., Morley rank as a generalization of Krull dimension). Such a structural geometric approach can make geometric stability theory an attractive key of entry into modern model theory for those mathematicians who are not already logicians. \hypertarget{basic_concepts}{}\subsection*{{Basic concepts}}\label{basic_concepts} Perhaps the key axiomatic notions of geometric stability theory (which at the outset don't seem particularly wedded to logic) are those of \emph{pregeometry} and \emph{geometry}. \begin{defn} \label{}\hypertarget{}{} Let $X$ be a set. A \textbf{pregeometry} on $X$ is a [[closure operator]] (i.e., a [[monad]] $cl \colon P X \to P X$ on the [[power set]]), satisfying the following two conditions: \begin{itemize}% \item The monad $cl$ is [[finitary functor|finitary]], i.e., $A \in X$ and $a \in cl(A)$, then there is a finite $A_0 \subseteq A$ such that $a \in cl(A_0)$. \item (Exchange condition) If $A \in P X$, $a,b \in X$, and $a \in cl(A\cup\{b\})$, then $a \in cl(A)$ or $b \in cl(A \cup \{\a\})$. (Cf. [[matroid]]) \end{itemize} A \textbf{geometry} is a pregeometry such that $cl(\emptyset) = \emptyset$ and $cl(\{x\}) = \{x\}$ for all $x \in X$. \end{defn} \begin{example} \label{}\hypertarget{}{} \begin{itemize}% \item Let $X$ be a [[vector space]], and let $cl$ be the monad on $P X$ whose algebras are vector subspaces of $X$. Clearly $cl$ is finitary (any subspace is the set-theoretic union of finite-dimensional subspaces), and the exchange condition is a classical fact about vector spaces related to the notion of independence. Thus $cl$ is a pregeometry. \item Similarly, let $X$ be a [[projective space]] $\mathbb{P}V$, and let $cl$ be the monad on $P X$ whose algebras are projective subspaces. Then $cl$ is a geometry (the closure of a point is a point). Any pregeometry $cl$ gives rise to a geometry in a similar way, in the sense that a pregeometry $cl$ induces a geometry on the image of the function $X \to P X$, $x \mapsto cl(\{x\})$, as explained in Remark \ref{project}. \item Let $X$ be an algebraically closed field; let $cl$ be the monad on $P X$ whose algebras are algebraically closed subfields. Then $cl$ is a pregeometry. That the exchange condition is satisfied is a classical result credited to Steinitz\footnote{Although oddly enough, as explained at the \href{http://www-history.mcs.st-andrews.ac.uk/Biographies/Steinitz.html}{MacTutor biography page}, what is called the Steinitz exchange condition was set out by Ernst Steinitz in a 1913 publication on convergent series and apparently not (?), as might be supposed, in his \emph{Algebraische Theorie der K\"o{}rper} (Crelle's Journal, 1910). His 1913 lemma was for \emph{vector spaces}.} . \end{itemize} \end{example} \begin{defn} \label{}\hypertarget{}{} Given a pregeometry $(X, cl)$, a subset $A \in P X$ is \textbf{independent} if for all $a \in A$, $a \notin cl(A - \{a\})$. An independent set $A$ said to be a \textbf{basis} for $Y \in P X$ if $Y \subseteq cl(A)$. All bases of $Y$ have the same cardinality, called the \textbf{dimension} of $Y$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Given a pregeometry $(X, cl)$ and a subset $Y \subseteq X$, there is a restriction pregeometry $cl^Y: P(Y) \to P(Y)$ defined by the formula \begin{displaymath} cl^Y(S) = cl(S) \cap Y. \end{displaymath} It is immediate that $A \subseteq Y$ is independent in $(X, cl)$ iff it is independent in $(Y, cl^Y)$, and that it is a basis for $Y$ in $(X, cl)$ iff it is a basis for $Y$ in $(Y, cl^Y)$. By this observation, to prove that any $Y \in P(X)$ has a well-defined dimension, we may assume without loss of generality that $Y = X$. That a pregeometry $X$ has well-defined dimension was proven \href{nlab/show/matroid#welldefined}{here}. \end{remark} \begin{remark} \label{project}\hypertarget{project}{} There is a standard way of getting a geometry from a pregeometry $(X, cl)$. First, if $cl(\emptyset) \neq \emptyset$, then replace $X$ by $X' \coloneqq X - cl(\emptyset)$, equipped with the restriction pregeometry of the previous remark. Then define an equivalence relation on $X'$ by $x \sim y$ if $cl(\{x\}) = cl(\{y\})$, and define a pregeometry on the quotient set $X'/\sim$ by \begin{displaymath} \widehat{cl}(A) \coloneqq \{[b]: b \in cl(A)\} \end{displaymath} where $[b]$ denotes the equivalence class of $b$. This abstracts the process of taking a projectivization of a vector space. \end{remark} \hypertarget{minimal_and_strongly_minimal_sets}{}\subsubsection*{{Minimal and strongly minimal sets}}\label{minimal_and_strongly_minimal_sets} We'll suppose for now that $\mathbf{L}$ is a countable [[signature (in logic)|signature]], so that the [[first-order language|language]] it generates consists of countably many formulas. Let $\mathbf{M}$ be an $\mathbf{L}$-structure, with underlying set $M$. \begin{defn} \label{}\hypertarget{}{} For $A \subseteq M$, an element $b \in M$ is \textbf{algebraic} over $A$ if there is a formula $\phi(y, w_1, \ldots, w_n)$ and elements $a_1, \ldots, a_n \in A$ such that $\mathbf{M} \models \phi(b, a_1, \ldots, a_n)$ and \begin{displaymath} \{c \in M: \mathbf{M} \models \phi(c, a_1, \ldots, a_n)\} \end{displaymath} is finite. The \textbf{algebraic closure} of $A$, denoted $acl(A)$, is the set of elements of $M$ that are algebraic over $A$. \end{defn} \begin{prop} \label{finclos}\hypertarget{finclos}{} The algebraic closure $A \mapsto acl(A)$ defines a finitary closure operator on $M$. \end{prop} \begin{proof} That $acl$ is monotone (preserves order) is obvious. Also the fact that $acl$ is finitary is easy: given that $b \in acl(A)$ satisfies $\mathbf{M} \models \phi(b, a_1, \ldots, a_n)$ for $a_1, \ldots, a_n \in A$, then similarly $b \in acl(A_0)$ for $A_0 = \{a_1, \ldots, a_n\}$. Taking $\phi(y, w)$ to be the equality predicate $y = w$, we see $A \subseteq acl(A)$. For idempotence of $acl$, suppose $b_1, \ldots, b_k \in acl(A)$ and $\mathbf{M} \models \psi(c, b_1, \ldots, b_k)$ where $\{y \in M: \mathbf{M} \models \psi(y, b_1, \ldots, b_k)\}$ has exactly $m$ elements. Write down a formula $F_{m, \psi}(x_1, \ldots, x_k)$ that says $\{y \in M: \mathbf{M} \models \psi(y, x_1, \ldots, x_k)\}$ has at most $m$ elements (by adding some extra inequalities, we can make this ``exactly $m$ elements''): \begin{displaymath} F_{m, \psi}(x_1, \ldots, x_k) \coloneqq \exists_{y_1, \ldots, y_m} \forall_y \psi(y, x_1, \ldots, x_k) \Leftrightarrow (y = y_1) \vee \ldots \vee (y = y_m). \end{displaymath} Now for $i = 1, \ldots, k$, let $\phi_i$ be a formula witnessing $b_i \in acl(A)$, i.e., $\mathbf{M} \models \phi_i(b_i, a_{i, 1}, \ldots, a_{i, n_i})$ where $a_{i, k} \in A$ and $\{x \in M: \mathbf{M} \models \phi_i(x, a_{i, 1}, \ldots, a_{i, n_i})\}$ has finitely many elements. Then \begin{displaymath} \exists_{x_1, \ldots, x_k} F_{m, \psi}(x_1, \ldots, x_k) \wedge \psi(y, x_1, \ldots, x_k) \wedge \bigwedge_{i=1}^k \phi_i(x_i, a_{i, 1}, \ldots, a_{i, n_i}) \end{displaymath} is a formula with parameters in $A$ that witnesses $c \in acl(A)$. This proves the idempotence of $acl$. \end{proof} As before, this notion of algebraic closure $acl: P(M) \to P(M)$ can be restricted to a closure operator $acl^X: P(X) \to P(X)$ for a subset $X \subseteq M$, via the definition $acl^X(A) \coloneqq X \cap acl(A)$ for $A \subseteq X$. One often writes just $acl$ instead of $acl^X$, provided that $X$ is understood. \begin{defn} \label{}\hypertarget{}{} For an $\mathbf{L}$-structure $\mathbf{M}$, let $D \subseteq M^n$ be definable. $D$ is \textbf{minimal} if the only definable subsets of $D$ are finite or cofinite in $D$. Slightly abusing language, if $\phi(x_1, \ldots, x_n, a_1, \ldots, a_k)$ is a formula with parameters that defines $D$, we also say $\phi$ is minimal. We say $D$ (or $\phi$) is \textbf{strongly minimal} if it is minimal in any elementary extension of $\mathbf{M}$. A theory $\mathbf{T}$ is \emph{strongly minimal} if for any model $\mathbf{M}$ of $\mathbf{T}$, the underlying set $M$ (definable by the formula $x = x$) is strongly minimal. \end{defn} \begin{example} \label{}\hypertarget{}{} \begin{enumerate}% \item Let $K$ be an algebraically closed field. (Elimination of quantifiers, Chevalley's theorem, etc.) Conclusion: ACF is a strongly minimal theory. \item Divisible torsionfree abelian groups. \item Non-example of dense linear orders. \end{enumerate} \end{example} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Baldwin, Lachlan)} The algebraic closure operator on a minimal set $X$ is a pregeometry. \end{theorem} \begin{proof} Let $A \subseteq X$ and suppose $c \in acl(A \cup \{b\}) - acl(A)$ for $b, c \in X$; we want to show $b \in acl(A \cup \{c\})$. Thus, suppose $\phi(c, b)$ is a formula with parameters from $A$ such that $\mathbf{M} \models \phi(c, b)$ and $card(\{x \in X: \mathbf{M} \models \phi(x, b)\}) = n$, a finite number. As in the proof of Proposition \ref{finclos}, let $\psi(w)$ be a formula that says $card(\{x \in X: \mathbf{M} \models \phi(x, w)\}) = n$. This is a formula with parameters from $A$ and $\psi(b)$ is satisfied in $\mathbf{M}$. If $\{y \in X: \mathbf{M} \models \phi(c, y) \wedge \psi(y)\}$ is finite, then since $b$ belongs to this set, $\phi(c, y) \wedge \psi(y)$ would witness $b \in acl(A \cup \{c\})$ and we would be done. So suppose otherwise. Then this set is cofinite in $X$, so that \begin{displaymath} card(X - \{y \in X: \mathbf{M} \models \phi(c, y) \wedge \psi(y)\}) = m \end{displaymath} for some finite $m$, and we can again write down a formula $\chi(x)$ with parameters from $A$ that says \begin{displaymath} card(X - \{y \in X: \mathbf{M} \models \phi(x, y) \wedge \psi(y)\}) = m. \end{displaymath} If $\chi(x)$ defines a finite subset of $X$, then since $\chi(c)$ is satisfied, we would reach the conclusion that $c \in acl(A)$, a contradiction. Hence $\chi(x)$ defines a subset cofinite in $X$. We may therefore choose $n+1$ elements $a_1, \ldots, a_{n+1} \in X$ such that $\chi(a_i)$ is satisfied. By our supposition, \begin{displaymath} B_i \coloneqq \{u \in X: \mathbf{M} \models \phi(a_i, u) \wedge \psi(u)\} \end{displaymath} is cofinite for $i = 1, \ldots, n+1$. Hence $\bigcap_{i=1}^{n+1} B_i$ is inhabited, say by an element $b'$. We have at least $n+1$ elements $x \in X$ such that $\phi(x, b')$ is satisfied, namely $x = a_1, \ldots, a_{n+1}$. But now this contradicts the fact $\psi(b')$. \end{proof} =-- \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[stability in model theory]] \item [[Zariski geometry]] \item [[matroid]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Anand Pillay, \emph{Geometric stability theory}, Oxford Logic Guides \textbf{32} \item slides from conference ``\href{http://www.maths.ox.ac.uk/events/borisfest}{Geometric model theory}'', Oxford 2010: directory \href{http://people.maths.ox.ac.uk/bays/misc/borisfest/notes}{html} \item Misha Gavrilovich, \emph{Model theory of universal covering space of complex algebraic varieties}, thesis, \href{http://people.maths.ox.ac.uk/bays/misha-thesis.pdf}{pdf} \item [[Boris Zilber]], \emph{Elements of Geometric Stability Theory}, 2003 (\href{http://people.maths.ox.ac.uk/zilber/est.pdf}{pdf}) \end{itemize} \end{document}