\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometrically discrete infinity-groupoid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{structures_in_}{Structures in $Disc\infty Grpd$}\dotfill \pageref*{structures_in_} \linebreak \noindent\hyperlink{TopAsCohesiveInfinTopos}{Geometric homotopy and Galois theory}\dotfill \pageref*{TopAsCohesiveInfinTopos} \linebreak \noindent\hyperlink{cohomology_and_principal_bundles}{Cohomology and principal $\infty$-bundles}\dotfill \pageref*{cohomology_and_principal_bundles} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term \emph{discrete $\infty$-groupoid} or \emph{bare $\infty$-groupoid} or \emph{geometrically [[discrete object|discrete]] [[geometric homotopy type]]} is essentially synonymous to just \emph{[[∞-groupoid]]} or just \emph{[[homotopy type]]}. It is used for emphasis in contexts where one considers $\infty$-groupoids with extra [[geometric homotopy type|geometric structure]] (e.g. [[cohesive (∞,1)-topos|cohesive]] [[stuff, structure, property|structure]]) to indicate that this extra structure is being disregarded, or rather that the special case of [[discrete space|discrete]] such structure is considered. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{uobservation} The [[terminal object in an (∞,1)-category|terminal]] [[(∞,1)-sheaf (∞,1)-topos]] [[∞Grpd]] is trivially a [[cohesive (∞,1)-topos]], where each of the defining four [[(∞,1)-functor]]s $(\Pi \dashv Disc \dashv \Gamma \dashv coDisc) : \infty Grpd \to \infty Grpd$ is an [[equivalence of (∞,1)-categories]]. \end{uobservation} \begin{udefn} In the context of [[cohesive (∞,1)-topos]]es we say that [[∞Grpd]] defines \textbf{discrete cohesion} and refer to its objects as \textbf{discrete $\infty$-groupoids}. More generally, given any other [[cohesive (∞,1)-topos]] \begin{displaymath} (\Pi \dashv Disc \dashv \Gamma \dashv codisc) : \mathbf{H} \stackrel{\overset{Disc}{\leftarrow}}{\underset{\Gamma}{\to}} \infty Grpd \end{displaymath} the [[inverse image]] $Disc$ of the [[global section]] functor is a [[full and faithful (∞,1)-functor]] and hence embeds [[∞Grpd]] as a full [[sub-(∞,1)-category]] of $\mathbf{H}$. A general object in $\mathbf{H}$ is a \emph{cohesive $\infty$-groupoid} . We say $X \in \mathbf{H}$ is a \textbf{discrete $\infty$-groupoid} if it is in the [[image]] of $Disc$. \end{udefn} \begin{uremark} This generalizes the traditional use of the terms [[discrete space]] and [[discrete group]]: \begin{itemize}% \item a [[discrete space]] is equivalently a 0-[[truncated]] discrete $\infty$-groupoid; \item a [[discrete group]] is equivalently a 0-[[truncated]] [[group object in an (∞,1)-category|group object]] in discrete $\infty$-groupoids. \end{itemize} \end{uremark} \hypertarget{structures_in_}{}\subsection*{{Structures in $Disc\infty Grpd$}}\label{structures_in_} We discuss now some of the general abstract [[cohesive (∞,1)-topos -- structures|structures in a cohesive (∞,1)-topos]] realized in discrete $\infty$-groupoids. \hypertarget{TopAsCohesiveInfinTopos}{}\subsubsection*{{Geometric homotopy and Galois theory}}\label{TopAsCohesiveInfinTopos} We discuss the general absatract notion of geometric homotopy in cohesive $(\infty,1)$-toposes (see ) in the context of discrete cohesion. By the [[homotopy hypothesis]]-theorem the [[(∞,1)-topos]]es [[Top]] and [[∞Grpd]] are [[equivalence of (∞,1)-categories|equivalent]], hence indistinguishable by general abstract constructions in [[(∞,1)-topos theory]]. However, in practice it can be useful to distinguish them as two different [[presentable (∞,1)-category|presentations]] for an equivalence class of $(\infty,1)$-toposes. For that purposes consider the following \begin{udefn} Define the [[quasi-categories]] \begin{displaymath} Top := N(Top_{Quillen})^\circ \end{displaymath} and \begin{displaymath} \infty Grpd := N(sSet_{Quillen})^\circ \,, \end{displaymath} where on the right we have the standard [[model structure on topological spaces]] $Top_{Quillen}$ and the standard [[model structure on simplicial sets]] $sSet_{Quillen}$ and $N((-)^\circ)$ denotes the [[homotopy coherent nerve]] of the [[simplicial category]] given by the full [[sSet]]-subcategory of these [[simplicial model categories]] on fibrant-cofibrant objects. \end{udefn} For \begin{displaymath} ({|-| \dashv Sing}) : Top_{Quillen} \stackrel{\overset{{|-|}}{\leftarrow}}{\underset{Sing}{\to}} sSet_{Quillen} \end{displaymath} the standard [[Quillen equivalence]] of the [[homotopy hypothesis]]-theorem given by the [[singular simplicial complex]]-functor and [[geometric realization]], write \begin{displaymath} (\mathbb{L} {|-|} \dashv \mathbb{R}Sing) : Top \stackrel{\overset{\mathbb{L}{|-|}}{\leftarrow}}{\underset{\mathbb{R}Sing}{\to}} \infty Grpd \end{displaymath} for the corresponding [[derived functor]]s (the image under the [[homotopy coherent nerve]] of the restriction of ${|-|}$ and $Sing$ to fibrant-cofibrant objects followed by functorial fibrant-cofibrant replacement) that constitute a pair of [[adjoint (∞,1)-functor]]s modeled as morphisms of [[quasi-categories]]. Since this is an [[equivalence of (∞,1)-categories]] either functor serves as the [[left adjoint]] and [[right adjoint]] and so we have \begin{uobservation} [[Top]] is exhibited a [[cohesive (∞,1)-topos]] over [[∞Grpd]] by setting \begin{displaymath} (\Pi \dashv Disc \dashv \Gamma \dashv coDisc) : Top \stackrel{\overset{\mathbb{R}Sing}{\to}}{\stackrel{\overset{\mathbb{L}{|-|}}{\leftarrow}}{\stackrel{\overset{\mathbb{R}Sing}{\to}}{\underset{\mathbb{L}{|-|}}{\leftarrow}}}} \infty Grpd \,. \,. \end{displaymath} In particular a presentation of the intrinsic [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos]] is given by the familiar [[singular simplicial complex]] construction \begin{displaymath} \Pi(X) \simeq \mathbb{R} Sing X \,. \end{displaymath} \end{uobservation} \begin{uremark} While degenerate, it is sometimes useful to make this example of a [[cohesive (∞,1)-topos]] explicit. For instance it allows to think of simplicial models for topological fibrations in terms of topological [[higher parallel transport]]. Some remarks on this are in . \end{uremark} \begin{uremark} Notice that the [[topology]] that enters the explicit construction of the objects in [[Top]] here does \emph{not} show up as [[cohesive (∞,1)-topos|cohesive structure]]. A [[topological space]] here is a model for a \emph{discrete} $\infty$-groupoid, the [[topology]] only serves to allow the construction of $Sing X$. For discussion of $\infty$-groupoids equipped with genuine \emph{topological cohesion} see [[Euclidean-topological ∞-groupoid]]. \end{uremark} \hypertarget{cohomology_and_principal_bundles}{}\subsubsection*{{Cohomology and principal $\infty$-bundles}}\label{cohomology_and_principal_bundles} We discuss the general abstract notion of cohomology and principal $\infty$-bundles a in cohesive $\infty$-toposes (see ) in the context of discrete cohesion. \begin{defn} \label{}\hypertarget{}{} Write $\mathrm{sGrp} = \mathrm{Grp}(\mathrm{sSet})$ for the category of [[simplicial group]]s. \end{defn} A classical reference is section 17 of \hyperlink{May}{May}. \begin{prop} \label{}\hypertarget{}{} The category $\mathrm{sGrpd}$ inherits a [[model category]] structure [[transferred model structure|transferred]] along the forgetful functor $F : \mathrm{sGrp} \to \mathrm{sSet}$. The category $\mathrm{sSet}_0 \hookrightarrow \mathrm{sSet}$ of reduced simplicial sets (simplicial sets with a single vertex) carries a model category structure whose weak equivalences and cofibrations are those of $\mathrm{sSet}_{\mathrm{Quillen}}$. There is a [[Quillen equivalence]] \begin{displaymath} (G \dashv \bar W) : sGrp \stackrel{\overset{G}{\leftarrow}}{\underset{\bar W}{\to}} sSet_{0} \end{displaymath} which [[presentable (infinity,1)-category|presents]] the abstract [[looping and delooping]] equivalence of $\infty$-categories \begin{displaymath} (\Omega \dashv \mathbf{B}) : \infty Grpd \stackrel{\overset{\Omega}{\leftarrow}}{\underset{B}{\to}} \infty Grpd_{connected} \,, \end{displaymath} \end{prop} The model structures and the Quillen equivalence are classical, discussed in (\hyperlink{GoerssJardine}{GoerssJardine, section V}) This means on abstract grounds that for $G$ a [[simplicial group]], $\bar W G \in \mathrm{sSet}$ is a model of the [[classifying space|classifying]] [[delooping]] object $\mathbf{B}G$ for discrte $G$-[[principal ∞-bundles]]. The following statements assert that these principal $\infty$-bundles themselves can be modeled as ordinary [[simplicial principal bundle]]s \begin{defn} \label{}\hypertarget{}{} For $G$ a [[simplicial group]] and $\bar W G$ the model for $\mathbf{B}G$ given by the above proposition, write \begin{displaymath} W G \to \bar W G \end{displaymath} for the simplicial [[decalage]] on $\bar W G$. \end{defn} This characterization of the object going by the classical name $W G$ is made fairly explicit in (\hyperlink{Duskin}{Duskin, p. 85}). \begin{prop} \label{}\hypertarget{}{} The morphism $W G \to \bar W G$ is a Kan fibration resolution of the point inclusion ${*} \to \bar W G$. \end{prop} This follows directly from the characterization of $W G \to \bar W G$ by [[decalage]]. Pieces of this statement appear in (\hyperlink{May}{May}): lemma 18.2 there gives the fibration property, prop. 21.5 the contractibility of $W G$. \begin{cor} \label{}\hypertarget{}{} For $G$ a [[simplicial group]], the sequence of simplicial sets \begin{displaymath} G \to W G \to \bar W G \end{displaymath} is a presentation of the [[fiber sequence]] \begin{displaymath} G \to * \to \mathbf{B}G \,. \end{displaymath} Hence $W G \to \bar W G$ is a model for the universal $G$-principal discrete $\infty$-bundle (see [[universal principal ∞-bundle]]): every $G$-principal discrete $\infty$-bundle $P \to X$ in $\infty \mathrm{Grpd}$, which by definition is a [[homotopy fiber]] \begin{displaymath} \itexarray{ P &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow \\ X &\to& \mathbf{B}G } \end{displaymath} in [[?Gpd]], is presented in the standard [[model structure on simplicial sets]] by the ordinary [[pullback]] \begin{displaymath} \itexarray{ P &\to& W G \\ \downarrow && \downarrow \\ X &\to& \bar W G } \,. \end{displaymath} \end{cor} The explicit statement that the sequence $G \to W G \to \bar W G$ is a model for the looping fiber sequence appears on p. 239 of \emph{[[Crossed Menagerie]]} . The universality of $W G \to \bar W G$ for $G$-principal simplicial bundles is the topic of section 21 in (\hyperlink{May}{May}), where however it is not made explicit that the ``[[twisted cartesian product]]s'' considered there are precisely the models for the pullbacks as above. This is made explicit on page 148 of \emph{[[Crossed Menagerie]]}. In \emph{[[Euclidean-topological ∞-groupoid]]} we discuss how this model of discrete principal $\infty$-bundles by simplicial principal bundles lifts to a model of topological principal $\infty$-bundles by simplicial topological bundles principal over [[simplicial topological group]]s. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[discrete space]] \item [[discrete group]] \item [[discrete groupoid]] \end{itemize} [[!include geometries of physics -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} [[simplicial group|Simplicial groups]] and [[simplicial principal bundles]] are discussed in \begin{itemize}% \item [[Peter May]], \emph{Simplicial Objects in Algebraic Topology} (\href{http://www.math.uchicago.edu/~may/BOOKS/Simp.djvu}{djvu}). \end{itemize} and section V of \begin{itemize}% \item [[Paul Goerss]] and [[Rick Jardine]], 1999, \emph{Simplicial Homotopy Theory}, number 174 in Progress in Mathematics, Birkhauser. (\href{http://www.maths.abdn.ac.uk/~bensondj/html/archive/goerss-jardine.html}{ps}) \end{itemize} The relation of $W G \to \bar W G$ to [[decalage]] is mentioned on p. 85 of \begin{itemize}% \item [[John Duskin]], \emph{Simplicial methods and the interpretation of ``triple'' cohomology}, number 163 in Mem. Amer. Math. Soc., 3, Amer. Math. Soc. (1975) \end{itemize} Discrete cohesion is the topic of section 3.1 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} , \end{itemize} where much of the above material is taken from. [[!redirects geometrically discrete infinity-groupoids]] [[!redirects geometrically discrete ∞-groupoid]] [[!redirects geometrically discrete ∞-groupoids]] [[!redirects discrete infinity-groupoid]] [[!redirects discrete ∞-groupoid]] [[!redirects discrete ∞-groupoids]] [[!redirects discrete infinity-groupoids]] [[!redirects Disc∞Grpd]] [[!redirects discrete ∞-group]] [[!redirects discrete ∞-groups]] [[!redirects discrete infinity-group]] [[!redirects discrete infinity-groups]] [[!redirects geometrically discrete homotopy type]] [[!redirects geometrically discrete homotopy types]] [[!redirects Discrete∞Groupoid]] [[!redirects Discrete∞Groupoids]] [[!redirects Discrete∞Grpd]] \end{document}