\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics - basic notions of topos theory} \hypertarget{BasicNotionsOfToposTheory}{}\subsection*{{Basic notions of Topos theory}}\label{BasicNotionsOfToposTheory} We have explained in Remark \ref{PresaheavesAsGeneralizedSpaces} how [[presheaves]] on a [[category]] $\mathcal{C}$ may be thought of as \emph{[[generalized spaces]] probe-able by the objects of $\mathcal{C}$}, and that two consistency conditions on this interpretation are provided by the [[Yoneda lemma]] (Prop. \ref{YonedaLemma}) and the resulting [[Yoneda embedding]] (Prop. \ref{YonedaEmbedding}). Here we turn to a third consistency condition that one will want to impose, namely a \emph{locality} or \emph{gluing condition} (Remark \ref{SheafConditionAsLocality} below), to be called the \emph{[[sheaf]]} condition (Def. \ref{SheafConditionAsLocality} below). More in detail, we had seen that any [[category of presheaves]] $[\mathcal{C}^{op}, Set]$ is the [[free cocompletion]] of the given [[small category]] $\mathcal{C}$ (Prop. \ref{FreeCocompletion}) and hence exhibits [[generalized spaces]] $\mathbf{X} \in [\mathcal{C}^{op}, Set]$ as being glued or \emph{[[generators and relations|generated]]} form the ``ordinary spaces'' $X \in \mathcal{C}$. Further conditions to be imposed now will impose \emph{[[generators and relations|relations]]} among these generators, such as the locality relation embodied by the [[sheaf]]-condition. It turns out that these relations are reflected by special properties of an [[adjunction]] (Def. \ref{AdjointFunctorsInTermsOfNaturalBijectionOfHomSets}) that relates [[generalized spaces]] to ordinary [[spaces]]: \textbf{[[generalized spaces]] via [[generators and relations]]:} \newline | $\phantom{A}\mathbf{H} \underoverset{\underset{\phantom{AAA}}{\longrightarrow}}{\overset{}{\longleftarrow}}{\simeq} [\mathcal{C}^{op},Set]$ | $\phantom{A}\mathbf{H} \underoverset{\underset{\text{accessible}}{\hookrightarrow}}{\overset{}{\longleftarrow}}{\bot} [\mathcal{C}^{op}, Set]$ | $\phantom{A}\mathbf{H} \underoverset{\underset{\text{accessible}}{\hookrightarrow}}{\overset{\text{left exact}}{\longleftarrow}}{\bot} [\mathcal{C}^{op}, Set]$ | | $\phantom{A}$Prop. \ref{FreeCocompletion}$\phantom{A}$ | $\phantom{A}$Def. \ref{LocallyPresentableCategory}$\phantom{A}$ | $\phantom{A}$Prop. \ref{SheafToposViaLexReflection}$\phantom{A}$ | | | | | | $\phantom{A}$\textbf{[[simplicial presheaves]]$\phantom{A}$} | \textbf{$\phantom{A}$[[combinatorial model category]]$\phantom{A}$} | \textbf{$\phantom{A}$[[model topos]]$\phantom{A}$} | | $\phantom{A}\mathbf{H} \underoverset{\underset{\phantom{AAA}}{\longrightarrow}}{\overset{}{\longleftarrow}}{\simeq_{Qu}} [\mathcal{C}^{op},sSet_{Qu}]_{proj}$ | $\phantom{A}\mathbf{H} \underoverset{\underset{\text{accessible}}{\hookrightarrow}}{\overset{}{\longleftarrow}}{\bot_{Qu}} [\mathcal{C}^{op}, sSet_{Qu}]_{proj}$ | $\phantom{A}\mathbf{H} \underoverset{\underset{\text{accessible}}{\hookrightarrow}}{\overset{\text{left exact}}{\longleftarrow}}{\bot_{Qu}} [\mathcal{C}^{op}, sSet_{Qu}]_{proj}$ | | $\phantom{A}$Example \ref{CategoriesOfSimplicialPresheaves} | $\phantom{A}$Def. \ref{BousfieldLocalizationOfModelCategories} | $\phantom{A}$Def. \ref{ModelTopos} | $\,$ \begin{remark} \label{SheafConditionAsLocality}\hypertarget{SheafConditionAsLocality}{} \textbf{([[sheaf|sheaf condition]] as [[local-to-global principle]] for [[generalized spaces]])} If the [[objects]] of $\mathcal{C}$ are thought of as [[spaces]] of sorts, as in Remark \ref{PresaheavesAsGeneralizedSpaces}, then there is typically a notion of \emph{locality} in these spaces, reflected by a notion of what it means to \emph{[[cover]]} a given space by (``smaller'') spaces (a \emph{[[coverage]]}, Def. \ref{Coverage} below). But if a space $X \in \mathcal{C}$ is covered, say by two other spaces $U_1, U_2 \in \mathcal{C}$, via morphisms \begin{displaymath} \itexarray{ U_1 && && U_2 \\ & {}_{\mathllap{i_1}}\searrow && \swarrow_{\mathrlap{i_2}} \\ && X } \end{displaymath} then this must be reflected in the behaviour of the probes of any generalized space $\mathbf{Y}$ (in the sense of Remark \ref{PresaheavesAsGeneralizedSpaces}) by these test spaces: For ease of discussion, suppose that there is a sense in which these two patches above [[intersection|intersect]] in $X$ to form a space $U_1 \cap_X U_2 \in \mathcal{C}$. Then locality of probes should imply that the ways of mapping $U_1$ and $U_2$ into $\mathbf{Y}$ such that these maps agree on the intersection $U_1 \cap_X U_2$, should be equivalent to the ways of mapping all of $X$ into $\mathbf{Y}$. \begin{displaymath} \text{locality} \;:\; \left\{ \itexarray{ \text{maps from}\,U_1\,\text{and}\,U_2\,\text{to}\,\mathbf{Y} \\ \text{that coincide on}\,U_1 \cap_X U_2 } \right\} \;\simeq\; \left\{ \text{maps from}\,X\,\text{into}\,\mathbf{Y} \right\} \end{displaymath} One could call this the condition of \emph{locality of probes of generalized spaces probeable by objects of $\mathcal{C}$}. But the established terminology is that this is the \emph{[[sheaf|sheaf condition]] \eqref{SheafCondition} on [[presheaves]] over $\mathcal{C}$}. Those presheaves which satisfy this condition are called the \emph{[[sheaves]]} (Def. \ref{Sheaf} below). \end{remark} \begin{remark} \label{}\hypertarget{}{} \textbf{Warning} Most (if not all) introductions to [[sheaf theory]] insist on motivating the concept from the special case of [[sheaves on topological spaces]] (Example \ref{SheafOnATopologicalSpace} below). This is good motivation for what Grothendieck called ``[[petit topos]]''-theory. The motivation above, instead, naturally leads to the ``[[gros topos]]''-perspective, as in Example \ref{SmoothSetAnnounced} below, which is more useful for discussing the [[synthetic differential geometry|synthetic]] [[higher differential geometry|higher]] [[geometry of physics -- supergeometry|supergeometry]] of [[physics]]. In fact, this is the perspective of \emph{[[functorial geometry]]} that has been highlighted since \href{functorial+geometry#Grothendieck65}{Grothendieck 65}, but which has maybe remained underappreciated. \end{remark} $\,$ We now first introduce the [[sheaf]]-condition (Def. \ref{Sheaf}) below in its traditional form via ``[[matching families]]'' (Def. \ref{CompatibleElements} below). Then we show (Prop. \ref{CechGroupoidCoRepresents} below) how this is equivalently expressed in terms of \emph{[[Cech groupoids]]} (Example \ref{CechGroupoid} below). This second formulation is convenient for understanding and handling various constructions in ordinary [[topos theory]] (for instance the definition of [[cohesive sites]]) and it makes immediate the generalization to [[higher topos theory]]. $\,$ \hypertarget{descent}{}\subsubsection*{{Descent}}\label{descent} Here we introduce the [[sheaf]]-condition (Def. \ref{Sheaf} below) in its component-description via [[matching families]] (Def. \ref{CompatibleElements} below). Then we consider some of the general key properties of the resulting [[categories of sheaves]], such as notably their ``convenience'', in the technical sense of Prop. \ref{PropertiesOfSheafToposes} below. $\,$ \begin{defn} \label{Coverage}\hypertarget{Coverage}{} \textbf{([[coverage]] and [[site]])} Let $\mathcal{C}$ be a [[small category]] (Def. \ref{SmallCategory}). Then a \emph{[[coverage]]} on $\mathcal{C}$ is \begin{itemize}% \item for each [[object]] $X \in \mathcal{C}$ a [[set]] of [[indexed sets]] of [[morphisms]] into $X$ \begin{displaymath} \left\{ U_i \overset{\iota_i}{\to} X \right\}_{i \in I} \end{displaymath} called the \emph{[[coverings]]} of $X$, \end{itemize} such that \begin{itemize}% \item for every [[covering]] $\left\{ U_i \overset{\iota_i}{\to} X \right\}_{i \in I}$ of $X$ and every [[morphism]] $Y \overset{f}{\longrightarrow} X$ there exists a \emph{refining covering} $\left\{ V_j \overset{\iota_j}{\to} Y \right\}_{j \in J}$ of $Y$, meaning that for each $j \in J$ there exists $i \in I$ and a morphism $V_j \overset{\iota_{j,i}}{\to} U_i$ such that \begin{equation} f \circ \iota_j \;=\; \iota_i \circ \iota_{j,i} \phantom{AAAAAAA} \itexarray{ V_j &\overset{\iota_{j,i}}{\longrightarrow}& U_i \\ {}^{\mathllap{ \iota_j }}\big\downarrow && \big\downarrow{}^{\mathrlap{ \iota_i}} \\ Y &\underset{f}{\longrightarrow}& X } \label{ConditionOnCoverage}\end{equation} \end{itemize} A [[small category]] $\mathcal{C}$ equipped with a [[coverage]] is called a \emph{[[site]]}. \end{defn} \begin{example} \label{CanonicalCoverageOnTopologicalSpaces}\hypertarget{CanonicalCoverageOnTopologicalSpaces}{} \textbf{(canonical [[coverage]] on [[topological spaces]])} The [[category]] [[Top]] of (small) [[topological spaces]] (Example \ref{ExamplesOfConcreteCategories}) carries a [[coverage]] (Def. \ref{Coverage}) whose [[coverings]] are the usal [[open covers]] of topological spaces. The condition \eqref{ConditionOnCoverage} on a coverage is met, since the [[preimages]] of [[open subsets]] under a [[continuous function]] $f$ are again [[open subsets]], so that the preimages of an open cover consistitute an open cover of the [[domain]], such that the [[commuting diagram]]-condition \eqref{ConditionOnCoverage} is immediage. Similarly, for $X \in Top$ a fixed topological space, there is the [[site]] $Op(X)$ whose underlying [[category]] is the \emph{[[category of opens]]} of $X$, which is the [[thin category]] (Example \ref{PartiallyOrderedSetsAsSmallCategories}) of [[open subsets]] of $X$ and subset inclusions, and whose [[coverings]] are again the [[open covers]]. \end{example} \begin{example} \label{DifferentiablyGoodOpenCoversOfSmoothManifolds}\hypertarget{DifferentiablyGoodOpenCoversOfSmoothManifolds}{} \textbf{(differentiably [[good open covers]] of [[smooth manifolds]])} The [[category]] [[SmthMfd]] of [[smooth manifold]] (Example \ref{ExamplesOfConcreteCategories}) carries a [[coverage]] (Def. \ref{Coverage}), where for $X \in SmthMfd$ any [[smooth manifold]] of [[dimension]] $D \in \mathbb{N}$, its [[coverings]] are collections of [[smooth functions]] from the [[Cartesian space]] $\mathbb{R}^D$ to $X$ whose [[image]] is the inclusion of an [[open ball]]. Hence these are the usual \emph{[[open covers]]} of $X$, but with the extra condition that every patch is [[diffeomorphism|diffeomorphic]] to a Cartesian space (hence to a smooth [[open ball]]). One may further constrain this and ask that also all the non-empty finite [[intersections]] of these open balls are [[diffeomorphism|diffeomorphic]] to open balls. These are the \emph{differentiably [[good open covers]]}. To see that these coverings satisfy the condition \eqref{ConditionOnCoverage}: The plain pullback of an [[open cover]] along any continuous function is again an open cover, just not necessarily by patches diffeomorphic to open balls. But every open cover may be \emph{refined} by one that is (see at \emph{[[good open cover]]}), and this is sufficient for \eqref{ConditionOnCoverage}. \end{example} Example \ref{DifferentiablyGoodOpenCoversOfSmoothManifolds} is further developed in the chapters \emph{[[geometry of physics -- smooth sets|smooth sets]]} and \emph{[[geometry of physics -- smooth homotopy types|on smooth homotopy types]]}. \begin{defn} \label{CompatibleElements}\hypertarget{CompatibleElements}{} \textbf{([[matching family]] -- [[descent object]])} Let $\mathcal{C}$ be a [[small category]] equipped with a [[coverage]], hence a [[site]] (Def. \ref{Coverage}) and consider a [[presheaf]] $\mathbf{Y} \in [\mathcal{C}^{op}, Set]$ (Example \ref{CategoryOfPresheaves}) over $\mathcal{C}$. Given an [[object]] $X \in \mathcal{C}$ and a [[covering]] $\left\{ U_i \overset{\iota_i}{\to} X \right\}_{i \in I}$ of it (Def. \ref{Coverage}) we say that a \emph{[[matching family]]} (of probes of $\mathbf{Y}$) is a [[tuple]] $(\phi_i \in \mathbf{Y}(U_i))_{i \in I}$ such that for all $i,j \in I$ and [[pairs]] of [[morphisms]] $U_i \overset{\kappa_i}{\leftarrow} V \overset{\kappa_j}{\to} U_j$ satisfying \begin{equation} \iota_i \circ \kappa_i \;=\; \iota_j \circ \kappa_j \phantom{AAAAAAAA} \itexarray{ && V \\ & {}^{\mathllap{\kappa_i}}\swarrow && \searrow^{\mathrlap{\kappa_j}} \\ U_i && && U_j \\ & {}_{\mathllap{\iota_i}}\searrow && \swarrow_{\mathrlap{\iota_j}} \\ && X } \label{MatchingCondition}\end{equation} we have \begin{equation} \mathbf{Y}(\kappa_i)(\phi_i) \;=\; \mathbf{Y}(\kappa_j)(\phi_j) \,. \label{GluingCondition}\end{equation} We write \begin{equation} Match\big( \{U_i\}_{i \in I} \,,\, \mathbf{Y} \big) \subset \underset{i}{\prod} \mathbf{Y}(U_i) \;\in\; Set \label{SetOfMatching}\end{equation} for the set of [[matching families]] for the given presheaf and covering. This is also called the \emph{[[descent object]]} of $\mathbf{Y}$ for \emph{[[descent]]} along the [[covering]] $\{U_i \overset{\iota_i}{\to}X\}$. \end{defn} \begin{example} \label{MatchingFamiliesThatGlue}\hypertarget{MatchingFamiliesThatGlue}{} \textbf{([[matching families]] that glue)} Let $\mathcal{C}$ be a [[small category]] equipped with a [[coverage]], hence a [[site]] (Def. \ref{Coverage}) and consider a [[presheaf]] $\mathbf{Y} \in [\mathcal{C}^{op}, Set]$ (Example \ref{CategoryOfPresheaves}) over $\mathcal{C}$. Given an [[object]] $X \in \mathcal{C}$ and a [[covering]] $\left\{ U_i \overset{\iota_i}{\to} X \right\}_{i \in I}$ of it (Def. \ref{Coverage}), then every element \begin{displaymath} \phi \;\in\; \mathbf{Y}(X) \end{displaymath} induces a [[matching family]] (Def. \ref{CompatibleElements}) by \begin{displaymath} \big( \mathbf{Y}(\iota_i)(\phi) \big)_{i \in I} \,. \end{displaymath} (That this indeed satisfies the matching condition follows immediately by the [[functor|functoriality]] of $\mathbf{Y}$.) This construction provides a [[function]] of the form \begin{equation} \mathbf{Y}(X) \longrightarrow Match\big( \{U_i\}_{i \in I} \,,\, \mathbf{Y} \big) \label{SheafComparison}\end{equation} The matching families in the image of this function are hence those [[tuples]] of probes of $\mathbf{Y}$ by the patches $U_i$ of $X$ which \emph{glue} to a global probe out of $X$. \end{example} \begin{defn} \label{Sheaf}\hypertarget{Sheaf}{} \textbf{([[sheaves]] and [[sheaf toposes]])} Let $\mathcal{C}$ be a [[small category]] equipped with a [[coverage]], hence a [[site]] (Def. \ref{Coverage}) and consider a [[presheaf]] $\mathbf{Y} \in [\mathcal{C}^{op}, Set]$ (Example \ref{CategoryOfPresheaves}) over $\mathcal{C}$. The presheaf $\mathbf{Y}$ is called a \emph{[[sheaf]]} if for every [[object]] $X \in \mathcal{C}$ and every [[covering]] $\left\{ U_i \overset{\iota_i}{\to} X \right\}_{i \in I}$ of $X$ \emph{all [[matching families]] glue uniquely}, hence if the comparison morphism \eqref{SheafComparison} is a [[bijection]] \begin{equation} \mathbf{Y}(X) \overset{\simeq}{\longrightarrow} Match\big( \{U_i\}_{i \in I} \,,\, \mathbf{Y} \big) \,. \label{SheafCondition}\end{equation} The [[full subcategory]] (Example \ref{FullSubcategoryOnClassOfObjects}) of the [[category of presheaves]] over a given [[site]] $\mathcal{C}$, on those that are sheaves is the \emph{[[category of sheaves]]}, denoted \begin{equation} Sh(\mathcal{C}) \overset{\phantom{AA} \iota \phantom{AA}}{\hookrightarrow} [\mathcal{C}^{op}, Set] \,. \label{FullSubcategoryOfSheaves}\end{equation} A [[category]] which is [[equivalence of categories|equivalent]] (Def. \ref{EquivalenceOfCategories}) to a [[category of sheaves]] is called a \emph{[[sheaf topos]]}, or often just \emph{[[topos]]}, for short. For $\mathbf{H}_1$ and $\mathbf{H}_2$ two such sheaf toposes, a [[homomorphism]] $f \;\colon\; \mathbf{H}_1 \to \mathbf{H}_2$ between them, called a \emph{[[geometric morphism]]} is an [[adjoint pair]] of [[functors]] (Def. \ref{AdjointFunctorsInTermsOfNaturalBijectionOfHomSets}) \begin{equation} \mathbf{H}_1 \underoverset {\underset{ \phantom{AA} f_\ast \phantom{AA} }{\longrightarrow}} \overset{ \phantom{AA} f^\ast \phantom{AA} }{\longleftarrow} {} \mathbf{H}_2 \label{GeometricMorphism}\end{equation} such that \begin{itemize}% \item the [[left adjoint]] $f^\ast$, called the \emph{[[inverse image]]}, [[preserved limit|preserves]] [[finite products]]. \end{itemize} Hence there is a [[category]] \emph{[[Topos]]}, whose [[objects]] are [[sheaf toposes]] and whose [[morphisms]] are [[geometric morphisms]]. \end{defn} \begin{example} \label{GlobalSectionsGeometricMorphism}\hypertarget{GlobalSectionsGeometricMorphism}{} \textbf{([[global sections]] [[geometric morphism]])} Let $\mathbf{H}$ be a [[sheaf topos]] (Def. \ref{Sheaf}). Then there is a [[geometric morphism]] \eqref{GeometricMorphism} to the [[category of sets]] (Example \ref{CategoryOfSets}), unique up to [[natural isomorphism]] (Def. \ref{NaturalTransformations}): \begin{displaymath} \mathbf{H} \underoverset {\underset{\phantom{AA}\Gamma\phantom{AA}}{\longrightarrow}} {\overset{L}{\hookleftarrow}} {\bot} Set \,. \end{displaymath} Here $\Gamma$ is called [[generalized the|the]] \emph{[[global sections]]-[[functor]]}. \end{example} \begin{proof} Notice that every [[set]] $S \in Set$ is the [[coproduct]], indexed by itself, of the [[terminal object]] $\ast \in Set$ ([[generalized the|the]] [[singleton]]): \begin{displaymath} S \;\simeq\; \underset{s \in S}{\coprod} \ast \,. \end{displaymath} Since $L$ is a [[left adjoint]], it [[preserved limit|preserves]] this [[coproduct]] (Prop. \ref{AdjointsPreserveCoLimits}). Moreover, since $L$ is assumed to preserve [[finite products]], and since the [[terminal object]] is the empty [[product]] (Example \ref{TerminalObjectIsEmptyLimit}), it also preserves the terminal object. Therefore $L$ is fixed, up to [[natural isomorphism]], to act as \begin{displaymath} \itexarray{ L(S) & \simeq L \left( \underset{s \in S}{\coprod} \ast \right) \\ & \simeq \underset{s \in S}{\coprod} L(\ast) \\ & \simeq \underset{s \in S}{\coprod} \ast } \,. \end{displaymath} This shows that $L$ exists and uniquely so, up to natural isomorphism. This implies the essential uniqueness of $\Gamma$ by uniqueness of adjoints (Prop. \ref{UniquenessOfAdjoints}). \end{proof} \begin{example} \label{TrivialCoverage}\hypertarget{TrivialCoverage}{} \textbf{([[trivial coverage]])} For $\mathcal{C}$ a [[small category]] (Def. \ref{SmallCategory}), the \emph{trivial coverage} on it is the [[coverage]] (Def. \ref{Coverage}) with no [[covering]] families at all, meaning that the [[sheaf|sheaf condition]] (Def. \ref{Sheaf}) over the resulting [[site]] is empty, in that \emph{every} [[presheaf]] is a [[sheaf]] for this coverage. Hence the [[category of presheaves]] $[\mathcal{C}^{op},Set]$ (Example \ref{CategoryOfPresheaves}) over a site $\mathcal{C}_{triv}$ with trivial coverage is already the corresponding [[category of sheaves]], hence the corresponding [[sheaf topos]]: \begin{displaymath} Sh\left( \mathcal{C}_{triv}\right) \;\simeq\; [\mathcal{C}^{op}, Set] \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} \textbf{([[sheaves]] on the [[terminal category]] are plain [[sets]])} Consider the [[terminal category]] $\ast$ (Example \ref{InitialCategoryAndTerminalCategory}) equipped with its [[trivial coverage]] (Example \ref{TrivialCoverage}). Then there is a canonical [[equivalence of categories]] (Def. \ref{EquivalenceOfCategories}) between the [[category of sheaves]] on this [[site]] (Def. \ref{Sheaf}) and the [[category of sets]] (Example \ref{CategoryOfSets}): \begin{displaymath} Sh(\ast) \;\simeq\; Set \,. \end{displaymath} Hence the [[category of sets]] is a [[sheaf topos]]. \end{example} \begin{example} \label{SheafOnATopologicalSpace}\hypertarget{SheafOnATopologicalSpace}{} \textbf{([[sheaves on a topological space]] -- [[spatial topos|spatial]] [[petit toposes]])} In the literature, the concept of (pre-)sheaf (Def. \ref{Sheaf}) is sometimes not defined relative to a [[site]], but relative to a [[topological space]]. But the latter is a special case: For $X$ a [[topological space]], consider its [[category of open subsets]] $Op(X)$ from Example \ref{CanonicalCoverageOnTopologicalSpaces}, with [[coverage]] given by the usual [[open covers]]. Then a ``[[sheaf on a topological space|sheaf on this topological space]]'' is a sheaf, in the sense of Def. \ref{Sheaf}, on this site of opens. One writes \begin{displaymath} Sh(X) \;\coloneqq\; Sh(Op(X)) \overset{\phantom{AA}}{\hookrightarrow} [Op(X)^{op}, Set] \,, \end{displaymath} for short. The [[sheaf toposes]] arising this way are also called \emph{[[spatial toposes]]}. \end{example} \begin{prop} \label{LocalicReflection}\hypertarget{LocalicReflection}{} \textbf{([[localic reflection]])} The construction of [[categories of sheaves on a topological space]] (Example \ref{SheafOnATopologicalSpace}) extends to a [[functor]] from the [[category]] \emph{[[Top]]} of [[topological spaces]] and [[continuous functions]] between them (Example \ref{ExamplesOfConcreteCategories}) to the [[category]] \emph{[[Topos]]} of [[sheaf toposes]] and [[geometric morphisms]] between them (Example \ref{SheafOnATopologicalSpace}). \begin{displaymath} Sh(-) \;\colon\; Top \longrightarrow Topos \,. \end{displaymath} Moreover, when restricted to [[sober topological spaces]], this becomes a [[fully faithful functor]], hence a [[full subcategory]]-inclusion (Def. \ref{FullyFaithfulFunctor}) \begin{displaymath} Sh(-) \;\colon\; SoberTop \overset{\phantom{AAA}}{\hookrightarrow} Topos \,. \end{displaymath} More generally, this holds for \emph{[[locales]]} (i.e. for ``[[sober topological spaces]] not necessarily supported on points''), in which case it becomes a [[reflective subcategory]]-inclusion (Def. \ref{ReflectiveSubcategory}) \begin{displaymath} Locale \underoverset {\underset{\phantom{AA} Sh(-) \phantom{AA} }{\hookrightarrow}} {\overset{\phantom{AAAA}}{\longleftarrow}} {\bot} Topos \end{displaymath} This says that [[categories of sheaves on topological spaces]] are but a reflection of soper topological spaces (generally: locales) and nothing more, whence they are also called \emph{[[petit toposes]]}. \end{prop} \begin{example} \label{AbelianSheaves}\hypertarget{AbelianSheaves}{} \textbf{([[abelian sheaves]])} In the literature, sometimes sheaves are understood by default as taking values not in the [[category of sets]], but in the category of [[abelian groups]]. Combined with Example \ref{SheafOnATopologicalSpace} this means that some authors really mean ``sheaf of abelian groups of the site of opens of a topological space'', when they write just ``sheaf''. But for $\mathcal{S}$ any [[mathematical structure]], a sheaf of $\mathcal{S}$-structured sets is equivalently an $\mathcal{S}$-structure [[internalization|internal]] to the [[category of sheaves]] according to Def. \ref{Sheaf}. In particular [[sheaves of abelian groups]] are equivalently abelian [[group objects]] in the category of sheaves of sets as discussed here. \end{example} \begin{example} \label{SmoothSetAnnounced}\hypertarget{SmoothSetAnnounced}{} \textbf{([[smooth sets]])} Consider the [[site]] [[SmthMfd]] of \emph{all} [[smooth manifolds]], from Example \ref{DifferentiablyGoodOpenCoversOfSmoothManifolds}. The [[category of sheaves]] over this (Def. \ref{Sheaf}) is [[equivalence of categories|equivalent]] to the category of \emph{[[smooth sets]]}, discussed in the chapter \emph{[[geometry of physics -- smooth sets]]}: \begin{displaymath} Sh(SmthMfd) \;\simeq\; SmoothSet \,. \end{displaymath} This is a \emph{[[gros topos]]}, in a sense made precise by Def. \ref{CohesiveTopos} below (a \emph{[[cohesive topos]]}). \end{example} \begin{remark} \label{OrdinarySpacesAreGeneratorsAndRelationsForGeneralizedSpaces}\hypertarget{OrdinarySpacesAreGeneratorsAndRelationsForGeneralizedSpaces}{} \textbf{(ordinary [[spaces]] and their [[coverings]] are [[generators and relations]] for [[generalized spaces]])} Given a [[site]] $\mathcal{C}$ (Def. \ref{Coverage}), then its [[presheaf topos]] $[\mathcal{C}^{op}, Set]$ (Example \ref{TrivialCoverage}) is the [[free cocompletion]] of the [[category]] $\mathcal{C}$ (Prop. \ref{FreeCocompletion}), hence the category obtained by [[free construction|freely]] forming [[colimits]] (``gluing'') of objects of $\mathcal{C}$. In contrast, the [[full subcategory]] inclusion $Sh(\mathcal{C}) \hookrightarrow [\mathcal{C}^{op}, Set]$ enforces \emph{relations} between these free colimits. Therefore in total we may think of a [[sheaf topos]] $Sh(\mathcal{C})$ as obtained by [[generators and relations]] from the [[objects]] of its [[site]] $\mathcal{C}$: \begin{itemize}% \item the objects of $\mathcal{C}$ are the generators; \item the [[coverings]] of $\mathcal{C}$ are the relations. \end{itemize} \end{remark} \begin{prop} \label{Sheafification}\hypertarget{Sheafification}{} \textbf{([[sheafification]] and [[plus construction]])} Let $\mathcal{C}$ be a [[site]] (Def. \ref{Coverage}). Then the [[full subcategory]]-inclusion \eqref{FullSubcategoryOfSheaves} of the [[category of sheaves]] over $\mathcal{C}$ (Def. \ref{Sheaf}) into the [[category of presheaves]] (Example \ref{CategoryOfPresheaves}) has a [[left adjoint]] (Def. \ref{AdjointFunctorsInTermsOfNaturalBijectionOfHomSets}) called \emph{[[sheafification]]} \begin{displaymath} Sh(\mathcal{C}) \underoverset {\underset{\phantom{AA} \iota \phantom{AA}}{\hookrightarrow}} {\overset{ L }{\longleftarrow}} {\bot} [\mathcal{C}^{op}, Set] \,. \end{displaymath} An explicit formula for [[sheafification]] is given by applying the following ``[[plus construction]]'' \emph{twice}: \begin{displaymath} L(\mathbf{Y}) \simeq (\mathbf{Y}^+)^+ \,. \end{displaymath} Here the [[plus construction]] \begin{displaymath} (-)^+ \;\colon\; [\mathcal{C}^{op}, Set] \longrightarrow [\mathcal{C}^{op}, Set] \end{displaymath} is given by forming [[equivalence classes]] of sets of [[matching families]] (Def. \ref{CompatibleElements}) for all possible [[covers]] (Def. \ref{Coverage}) \begin{displaymath} \mathbf{Y}^+(X) \;\coloneqq\; \left\{ \{U_i \overset{\iota_i}{\to} X\} \; \text{covering} \;, \phi \in Match\left( \{U_i\}, \mathbf{Y} \right) \right\}/\sim \end{displaymath} under the [[equivalence relation]] which identifies two such [[pairs]] if the two covers have a joint refinement such that the restriction of the two matching families to that joint refinement coincide. \end{prop} $\,$ \begin{example} \label{InducedCoverage}\hypertarget{InducedCoverage}{} \textbf{([[induced coverage]])} Let $\mathcal{C}$ be a [[site]] (Def. \ref{Coverage}). Then a [[full subcategory]] (Def. \ref{FullyFaithfulFunctor}) \begin{displaymath} \mathcal{D} \hookrightarrow \mathcal{C} \end{displaymath} becomes a [[site]] itself, whose [[coverage]] consists of those [[coverings]] $\{U_i \overset{\iota_i}{\to} Y\}$ in $\mathcal{C}$ that happen to be in $\mathcal{D} \hookrightarrow \mathcal{C}$. \end{example} \begin{defn} \label{DenseSubsite}\hypertarget{DenseSubsite}{} \textbf{([[dense subsite]])} Let $\mathcal{C}$ and $\mathcal{D}$ be [[sites]] (Def. \ref{Coverage}) with a a [[full subcategory]]-inclusion (Def. \ref{FullyFaithfulFunctor}) \begin{displaymath} \mathcal{D} \hookrightarrow \mathcal{C} \end{displaymath} and regard $\mathcal{D}$ as equipped with the [[induced coverage]] (Def. \ref{InducedCoverage}). This is called a \emph{[[dense subsite]]-inclusion} if every [[object]] $X \in \mathcal{C}$ has a [[covering]] $\{U_i \overset{\iota_i}{\to} X\}_i$ such that for all $i$ the patches are in the subcategory: \begin{displaymath} U_i \;\in\; \mathcal{D} \hookrightarrow \mathcal{C} \,. \end{displaymath} \end{defn} \begin{prop} \label{ComparisonLemma}\hypertarget{ComparisonLemma}{} \textbf{([[comparison lemma]])} Let $\mathcal{D} \overset{\iota}{\hookrightarrow} \mathcal{C}$ be a [[dense subsite]] inclusion (def. \ref{DenseSubsite}). Then [[precomposition]] with $\iota$ induces an [[equivalence of categories]] (Def. \ref{EquivalenceOfCategories}) between their [[categories of sheaves]] (Def. \ref{Sheaf}): \begin{displaymath} \iota^\ast \;\colon\; Sh(\mathcal{C}) \overset{\simeq}{\longrightarrow} Sh(\mathcal{D}) \end{displaymath} \end{prop} \begin{prop} \label{RecognitionOfEpimorphisms}\hypertarget{RecognitionOfEpimorphisms}{} \textbf{(recognition of [[epimorphism|epi-]]/[[monomorphism|mono-]]/[[isomorphisms]] of [[sheaves]])} Let $\mathcal{C}$ be a [[site]] (Def. \ref{Coverage}) with $Sh(\mathcal{C})$ its [[category of sheaves]] (Def. \ref{Sheaf}). Then a [[morphisms]] $f \;\colon\; \mathbf{X} \to \mathbf{Y}$ in $Sh(\mathcal{C})$ is \begin{enumerate}% \item a [[monomorphism]] (Def. \ref{Monomorphism}) or [[isomorphism]] (Def. \ref{Isomorphism}) precisely if it is so \emph{globally} in that for each object $U \in \mathcal{C}$ in the site, then the component $f_U \colon \mathbf{X}(U) \to \mathbf{Y}(U)$ is an [[injection]] or [[bijection]] of [[sets]], respectively. \item an [[epimorphism]] (Def. \ref{Monomorphism}) precisely if it is so \emph{locally}, in that: for all $U \in C$ there is a [[covering]] $\{p_i : U_i \to U\}_{i \in I}$ such that for all $i \in I$ and every element $y \in \mathbf{Y}(U)$ the element $f(p_i)(y)$ is in the image of $f(U_i) : \mathbf{X}(U_i) \to \mathbf{Y}(U_i)$. \end{enumerate} \end{prop} \begin{prop} \label{SheafToposEpiMonoFactorization}\hypertarget{SheafToposEpiMonoFactorization}{} \textbf{([[(epi, mono) factorization system|epi/mono-factorization]] through [[image]])} Let $Sh(\mathcal{C})$ be a [[category of sheaves]] (Def. \ref{Sheaf}). Then every [[morphism]] $f \;\colon\; \mathbf{X} \to \mathbf{Y}$ factors as an [[epimorphism]] followed by a [[monomorphism]] (Def. \ref{Monomorphism}) uniquely up to unique [[isomorphism]]: \begin{displaymath} f \;\colon\; \mathbf{X} \overset{epi}{\longrightarrow} im(f) \overset{mono}{\longrightarrow} \mathbf{Y} \,. \end{displaymath} [[generalized the|The]] [[object]] $im(f)$, as a [[subobject]] of $\mathbf{Y}$, is called the \emph{[[image]]} of $f$. In fact this is an [[orthogonal factorization system]], in that for every [[commuting square]] where the left morphism is an [[epimorphism]], and the right one a [[monomorphism]], there exists a unique [[lift]]: \begin{equation} \itexarray{ A &\overset{\phantom{AAA}}{\longrightarrow}& B \\ {}^{\mathllap{epi}}\big\downarrow &{}^{\exists!}\nearrow& \big\downarrow^{\mathrlap{mono}} \\ C &\underset{\phantom{AAA}}{\longrightarrow}& D } \label{EpiMonoOrthogonalLifting}\end{equation} This implies that this is a [[functorial factorization]], in that for every [[commuting square]] \begin{displaymath} \itexarray{ \mathbf{X}_1 &\overset{f_1}{\longrightarrow}& \mathbf{Y}_1 \\ \big\downarrow && \big\downarrow \\ \mathbf{X}_2 &\underset{f_2}{\longrightarrow}& \mathbf{Y}_2 } \end{displaymath} there is an induced morphism of [[images]] such that the resulting rectangular [[commuting diagram|diagram commutes]]: \begin{displaymath} \itexarray{ \mathbf{X}_1 &\overset{epi}{\longrightarrow}& im(f_1) &\overset{mono}{\longrightarrow}& \mathbf{Y}_1 \\ \big\downarrow && \big\downarrow && \big\downarrow \\ \mathbf{X}_2 &\overset{epi}{\longrightarrow}& im(f_2) &\overset{mono}{\longrightarrow}& \mathbf{Y}_2 } \end{displaymath} \end{prop} $\,$ We discuss some of the key properties of [[sheaf toposes]]: \begin{prop} \label{PropertiesOfSheafToposes}\hypertarget{PropertiesOfSheafToposes}{} \textbf{([[sheaf toposes]] are [[cosmoi]])} Let $\mathcal{C}$ be a [[site]] (Def. \ref{Coverage}) and $Sh(\mathcal{C})$ its [[sheaf topos]] (Def. \ref{Sheaf}). Then: \begin{enumerate}% \item All [[limits]] exist in $Sh(\mathcal{C})$ (Def. \ref{Limits}), and they are computed as limits of presheaves, via Example \ref{LimitsOfPresheavesAreComputedObjectwise}: \begin{displaymath} \iota\left( \underset{\underset{d}{\longleftarrow}}{\lim} \mathbf{X}_d \right) \;\simeq\; \underset{\underset{d}{\longleftarrow}}{\lim} \iota(\mathbf{X}_d) \end{displaymath} \item All [[colimits]] exist in $Sh(\mathcal{C})$ (Def. \ref{Limits}) and they are given by the [[sheafification]] (Def. \ref{Sheafification}) of the same colimits computed in the [[category of presheaves]], via Example \ref{LimitsOfPresheavesAreComputedObjectwise}: \begin{displaymath} \underset{\underset{d}{\longrightarrow}}{\lim} \mathbf{X}_d \;\simeq\; L\left( \underset{\underset{d}{\longleftarrow}}{\lim} \iota(\mathbf{X}_d) \right) \end{displaymath} \item The [[cartesian monoidal category|cartesian]] (Example \ref{CartesianMonoidalCategory}) [[closed monoidal category]]-structure (Def. \ref{ClosedMonoidalCategory}) on the [[category of presheaves]] $[\mathcal{C}^{op}, Set]$ from Example \ref{CartesianClosedMonoidalnessOfCategoriesOfPresheaves} restricts to sheaves: \begin{displaymath} Sh(\mathcal{C}) \underoverset {\underset{[\mathbf{X}, -]}{\longrightarrow}} {\overset{\mathbf{X} \times (-)}{\longleftarrow}} {} Sh(\mathcal{C}) \end{displaymath} In particular, for $\mathbf{X}, \mathbf{Y} \in Sh(\mathcal{C})$ two [[sheaves]], their [[internal hom]] $[\mathbf{X}, \mathbf{Y}] \in Sh(\mathcal{C})$ is a [[sheaf]] given by \begin{displaymath} [\mathbf{X}, \mathbf{Y}] \;\colon\; U \;\mapsto\; Hom_{Sh(\mathcal{C})}( y(U) \mathbf{X}, \mathbf{Y} ) \,, \end{displaymath} where $y(U)$ is the [[representable presheaf|presheaf represented]] by $U \in \mathcal{C}$ (Example \ref{RepresentablePresheaves}). \end{enumerate} This may be summarized by saying that every [[sheaf topos]] (in particular every [[category of presheaves]], by Example \ref{TrivialCoverage}) is a [[cosmos]] for [[enriched category theory]] (Def. \ref{Cosmos}). \end{prop} \begin{defn} \label{LocalEpimorphism}\hypertarget{LocalEpimorphism}{} \textbf{([[local epimorphism]])} Let $\mathcal{C}$ be a [[site]] (Def. \ref{Coverage}). Then a [[morphism]] of [[presheaves]] over $\mathcal{C}$ (Example \ref{CategoryOfPresheaves}) \begin{displaymath} \mathbf{Y} \overset{\phantom{AA}f\phantom{AA}}{\longrightarrow} \mathbf{X} \;\;\; \in [\mathcal{S}^{op}, Set] \end{displaymath} is called a \emph{[[local epimorphism]]} if for every [[object]] $U \in \mathcal{C}$, every [[morphism]] $y(U) \longrightarrow \mathbf{X}$ out of its [[representable presheaf|represented presheaf]] (Example \ref{RepresentablePresheaves}) has the \emph{local [[lifting property]]} through $f$ in that there is a [[covering]] $\big\{ U_i \overset{\iota_i}{\to} U \big\}$ (Def. \ref{Coverage}) and a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ y(U_i) &\overset{\phantom{AA}\exists\phantom{AA}}{\longrightarrow}& \mathbf{Y} \\ {}^{\mathllap{y(\iota_i)}} \Big\downarrow && \Big\downarrow{}^{\mathrlap{ f }} \\ y(U) &\underset{\phantom{AAAA}}{\longrightarrow}& \mathbf{X} } \end{displaymath} \end{defn} $\,$ \hypertarget{codescent}{}\subsubsection*{{Codescent}}\label{codescent} In order to understand the sheaf condition \eqref{SheafCondition} better, it is useful to consider [[Cech groupoids]] (Def. \ref{CechGroupoid} below). These are really \emph{[[presheaves of groupoids]]} (Def. \ref{PresheafOfGroupoids} below), a special case of the general concept of [[enriched presheaves]]. The key property of the [[Cech groupoid]] is that it co-represents the [[sheaf|sheaf condition]] (Prop. \ref{CechGroupoidCoRepresents} below). It is in this incarnation that the concept of sheaf seamlessly generalizes to [[homotopy theory]] via ``[[higher stacks]]''. $\,$ \begin{defn} \label{PresheafOfGroupoids}\hypertarget{PresheafOfGroupoids}{} \textbf{([[presheaves of groupoids]])} For $\mathcal{C}$ a [[small category]] (Def. \ref{SmallCategory}) consider the [[functor category]] (Example \ref{FunctorCategory}) from the [[opposite category]] of $\mathcal{C}$ (Example \ref{OppositeCategory}) to the category [[Grpd]] of [[small groupoid|small]] [[groupoids]] (Example \ref{CategoriesOfSmallCategories}) \begin{displaymath} [\mathcal{C}^{op}, Grpd] \,. \end{displaymath} By Example \ref{ExamplesOfCosmoi} we may regard [[Grpd]] as a [[cosmos]] for [[enriched category theory]]. Since the inclusion $Set \hookrightarrow Grpd$ (Example \ref{ReflectiveSubcategoryInclusionOfSetsIntoGroupoids}) is a [[strong monoidal functor]] (Def. \ref{LaxMonoidalFunctor}) of [[cosmoi]] (Example \ref{ExamplesOfCosmoi}), the plain category $\mathcal{C}$ may be thought of as a [[Grpd]]-[[enriched category]] (Def. \ref{TopEnrichedCategory}) and hence a functor $\mathcal{C}^{op} \to Grpd$ is equivalently a [[Grpd]]-[[enriched functor]] (Def. \ref{TopologicallyEnrichedFunctor}). This means that the plain [[category of functors]] $[\mathcal{C}^{op}, Grpd]$ enriches to [[Grpd]]-[[enriched category]] of [[Grpd]]-[[enriched presheaves]] (Example \ref{EnrichedPresheaf}). Hence we may speak of \emph{[[presheaves of groupoids]]}. \end{defn} \begin{remark} \label{PresheavesOfGroupoidsAsInternalGroupoidsInPresheaves}\hypertarget{PresheavesOfGroupoidsAsInternalGroupoidsInPresheaves}{} \textbf{([[presheaves of groupoids]] as [[internal groupoids]] in [[presheaves]])} From every [[presheaf of groupoids]] $\mathbf{Y} \in [\mathcal{C}^{op}, Grpd]$ (Def. \ref{PresheafOfGroupoids}), we obtain two ordinary [[presheaves]] of sets (Def. \ref{CategoryOfPresheaves}) called the \begin{itemize}% \item \emph{presheaf of objects} \begin{displaymath} Obj_{\mathbf{Y}(-)} \in [\mathcal{C}^{op}, Set] \end{displaymath} \item the \emph{presheaf of morphisms} \begin{displaymath} Mor_{\mathbf{Y}(-)} \;\coloneqq\; \underset{x,y \in Obj_{\mathbf{Y}(-)}}{\coprod} Hom_{{\mathbf{Y}(-)}} \;\colon\; [\mathcal{C}^{op}, Set] \end{displaymath} \end{itemize} In more abstract language this assignment constitutes an [[equivalence of categories]] \begin{equation} \itexarray{ [\mathcal{C}^{op}, Grpd] &\overset{\simeq}{\longrightarrow}& Grpd\left( [\mathcal{C}^{op}, Grpd]\right) \\ \mathbf{Y} &\mapsto& \left( \phantom{AAA} \itexarray{ \underset{ Mor_{\mathbf{Y}(-)} }{ \underbrace{ \underset{x,y \in Obj_{\mathbf{Y}(-)}}{\coprod} Hom_{{\mathbf{Y}(-)}} }} \\ {}^{\mathllap{ \itexarray{(x \overset{f}{\to}y) \\ \mapsto\\ x} } }\Big\downarrow \;\;\;\; \Big\uparrow^{\mathrlap{ \itexarray{ x \\ \mapsto \\ x \overset{id_x}{\to} x } }} \phantom{x \overset{id_x}{\to} } \Big\downarrow^{ \mathrlap{ \itexarray{ (x \overset{f}{\to} y) \\ \mapsto \\ y } } } \\ Obj_{\mathbf{Y}(-)} } \phantom{AAA} \right) } \,. \label{InternalGroupoidsPresheavesOfGroupoids}\end{equation} from [[presheaves of groupoids]] to \emph{[[internal groupoids]]- in the [[category of presheaves]] over $\mathcal{C}$ (Def. \ref{CategoryOfPresheaves}).} \end{remark} \begin{example} \label{PresaheavesOfSetsReflectiveInPresheavesOfGroupoids}\hypertarget{PresaheavesOfSetsReflectiveInPresheavesOfGroupoids}{} \textbf{([[presheaves]] of [[sets]] form [[reflective subcategory]] of [[presheaves of groupoids]])} Let $\mathcal{C}$ be a [[small category]] (Def. \ref{SmallCategory}). There is the [[reflective subcategory]]-inclusion (Def. \ref{ReflectiveSubcategory}) of the [[category of presheaves]] over $\mathcal{C}$ (Example \ref{CategoryOfPresheaves}) into the category of [[presheaves of groupoids]] over $\mathcal{C}$ (Def. \ref{PresheafOfGroupoids}) \begin{displaymath} [\mathcal{C}^{op}, Set] \underoverset {\underset{\phantom{AAAA}}{\hookrightarrow}} {\overset{\pi_0}{\longleftarrow}} {\bot} [\mathcal{C}^{op}, Grpd] \end{displaymath} which is given over each object of $\mathcal{C}$ by the reflective inclusion of [[sets]] into [[groupoids]] (Example \ref{ReflectiveSubcategoryInclusionOfSetsIntoGroupoids}). \end{example} \begin{example} \label{CechGroupoid}\hypertarget{CechGroupoid}{} \textbf{([[Cech groupoid]])} Let $\mathcal{C}$ be a [[site]] (Def. \ref{Coverage}), and $X \in \mathcal{C}$ an [[object]] of that site. For each [[covering]] family $\{ U_i \overset{\iota_i}{\to} X\}$ of $X$ in the given [[coverage]], the \emph{[[Cech groupoid]]} is the [[presheaf of groupoids]] (Def. \ref{PresheafOfGroupoids}) \begin{displaymath} C(\{U_i\}) \;\in\; [\mathcal{C}^{op}, Grpd] \;\simeq\; Grpd\left( [\mathcal{C}^{op}, Set] \right) \end{displaymath} which, regarded as an [[internal groupoid]] in the [[category of presheaves]] over $\mathcal{C}$, via \eqref{InternalGroupoidsPresheavesOfGroupoids}, has as [[presheaf]] of [[objects]] the [[coproduct]] \begin{displaymath} Obj_{C(\{U_i\})} \;\coloneqq\; \underset{i}{\coprod} y(U_i) \end{displaymath} of the [[representable presheaf|presheaves represented]] (under the [[Yoneda embedding]], Prop. \ref{YonedaEmbedding}) by the [[covering]] objects $U_i$, and as [[presheaf]] of [[morphisms]] the [[coproduct]] over all [[fiber products]] of these: \begin{displaymath} Mor_{C(\{U_i\})} \;\coloneqq\; \underset{i,j}{\coprod} y(U_i) \times_{y(X)} y(U_j) \,. \end{displaymath} This means equivalently that for any $V \in \mathcal{C}$ the [[groupoid]] assigned by $C(\{U_i\})$ has as set of objects [[pairs]] consisting of an index $i$ and a morphism $V \overset{\kappa_i}{\to} U_i$ in $\mathcal{C}$, and there is a unique morphism between two such objects \begin{displaymath} \kappa_i \longrightarrow \kappa_j \end{displaymath} precisely if \begin{equation} \iota_i \circ \kappa_i \;=\; \iota_j \circ \kappa_j \phantom{AAAAAAAA} \itexarray{ && V \\ & {}^{\mathllap{\kappa_i}}\swarrow && \searrow^{\mathrlap{\kappa_j}} \\ U_i && && U_j \\ & {}_{\mathllap{\iota_i}}\searrow && \swarrow_{\mathrlap{\iota_j}} \\ && X } \label{CechMatchingCondition}\end{equation} \end{example} Condition \eqref{CechMatchingCondition} for [[morphisms]] in the [[Cech groupoid]] to be well-defined is verbatim the condition \eqref{MatchingCondition} in the definition of [[matching families]]. Indeed, [[Cech groupoids]] serve to conveniently summarize (and then generalize) the [[sheaf|sheaf condition]] (Def. \ref{Sheaf}): \begin{prop} \label{CechGroupoidCoRepresents}\hypertarget{CechGroupoidCoRepresents}{} \textbf{([[Cech groupoid]] co-represents [[matching families]] -- [[codescent]])} For [[Grpd]] regarded as a [[cosmos]] (Example \ref{ExamplesOfCosmoi}), and $\mathcal{C}$ a [[site]] (Def. \ref{Coverage}), let \begin{displaymath} \mathbf{Y} \in [\mathcal{C}^{op}, Set] \hookrightarrow [\mathcal{C}^{op}, Grpd] \end{displaymath} be a [[presheaf]] on $\mathcal{C}$ (Example \ref{CategoryOfPresheaves}), regarded as a [[Grpd]]-[[enriched presheaf]] via Example \ref{PresaheavesOfSetsReflectiveInPresheavesOfGroupoids}, let $X \in \mathcal{C}$ be any [[object]] and $\{U_i \overset{\iota_i}{\to} X\}_i$ a [[covering]] family (Def. \ref{Coverage}) with induced [[Cech groupoid]] $C(\{U_i\}_i)$ (Example \ref{CechGroupoid}). Then there is an [[isomorphism]] \begin{displaymath} [\mathcal{C}^{op},Grpd] \left( C\left(\{U_i\}_i\right), \, \mathbf{Y} \right) \;\simeq\; Match\left( \{U_i\}_i, \, \mathbf{Y} \right) \end{displaymath} between the [[hom-object|hom-groupoid]] of [[Grpd]]-[[enriched presheaves]] (Def. \ref{PointedTopologicalFunctorCategory}) and the set of [[matching families]] (Def. \ref{CompatibleElements}). Since hence the Cech-groupoid co-represents the [[descent object]], it is sometimes called the \emph{[[codescent object]]} along the given covering. Moreover, under this identification the canonical morphism \begin{equation} C\left( \{U_i\}_i \right) \overset{p_{\{U_i\}_i}}{\longrightarrow} y(X) \label{CechResolution}\end{equation} induces the comparison morphism \eqref{SheafComparison} \begin{displaymath} \itexarray{ [\mathcal{C}^{op}, Grpd]\left( y(X), \, \mathbf{Y} \right) & \simeq & \mathbf{Y}(X) \\ {}^{ \mathllap{ [\mathcal{C}^{op}, Grpd](p_{\{U_i\}_i}, \mathbf{Y}) } }\downarrow && \downarrow \\ [\mathcal{C}^{op},Grpd] \left( C\left(\{U_i\}_i\right), \, \mathbf{Y} \right) &\simeq& Match\left( \{U_i\}_i, \, \mathbf{Y} \right) } \,. \end{displaymath} In conclusion, this means that the [[presheaf]] $\mathbf{Y}$ is a [[sheaf]] (Def. \ref{Sheaf}) precisely if homming Cech groupoid projections into it produces an isomorphism: \begin{equation} \mathbf{Y} \,\text{is a sheaf} \phantom{AAAA} \Leftrightarrow \phantom{AAAA} \left[ C\left( \{U_i\}_i \right) \overset{p_{\{U_i\}I}}{\to} y(X) \;,\; \mathbf{Y} \right] \, \text{is iso, for all covering families} \, \{U_i \to X\} \label{SheafIsLocalObjectWithRespectToCechCovers}\end{equation} One also says in this case that $\mathbf{Y}$ is a \emph{[[local object]] with respect to [[Cech covers]]}/ \end{prop} \begin{proof} By \eqref{HomObjectOfEnrichedFunctorCategoryViaEnd} the hom-groupoid is computed as the [[end]] \begin{displaymath} [\mathcal{C}^{op},Grpd] \left( C\left(\{U_i\}_i\right), \, \mathbf{Y} \right) \;=\; \int_{V \in \mathcal{C}} \left[ C\left(\{U_i\}_i\right)(V), \, \mathbf{Y}(V) \right] \,, \end{displaymath} where, by Example \ref{ExamplesOfCosmoi}, the ``integrand'' is the [[functor category]] (here: a [[groupoid]]) from the [[Cech groupoid]] at a given $V$ to the set (regarded as a groupoid) assigned by $\mathbf{Y}$ to $V$. Since $\mathbf{Y}(V)$ is just a set, that functor groupoid, too, is just a set, regarded as a groupoid. Its elements are the [[functors]] $C\left(\{U_i\}_i\right)(V) \longrightarrow \mathbf{Y}(V)$, which are equivalently those [[functions]] on sets of objects \begin{displaymath} \underset{i}{\coprod} y(U_i)(V) = Obj_{C\left(\{U_i\}_i\right)(V)} \longrightarrow Obj_{\mathbf{Y}(V)} = \mathbf{Y}(V) \end{displaymath} which respect the [[equivalence relation]] induced by the morphisms in the Cech groupoid at $V$. Hence the hom-groupoid is a subset of the [[end]] of these [[function sets]]: \begin{displaymath} \begin{aligned} \int_{V \in \mathcal{C}} \left[ C\left(\{U_i\}_i\right)(V), \, \mathbf{Y}(V) \right] & \hookrightarrow \int_{V \in \mathcal{C}} \left[ \underset{i}{\coprod} y(U_i)(V), \, \mathbf{Y}(V) \right] \\ & \simeq \int_{V \in \mathcal{C}} \underset{i}{\prod} \left[ y(U_i)(V), \, \mathbf{Y}(V) \right] \\ & \simeq \underset{i}{\prod} \int_{V \in \mathcal{C}} \left[ y(U_i)(V), \, \mathbf{Y}(V) \right] \\ & \simeq \underset{i}{\prod} \mathbf{Y}(U_i) \end{aligned} \end{displaymath} Here we used: first that the [[internal hom]]-functor turns colimits in its first argument into limits (Prop. \ref{InternalHomPreservesLimits}), then that [[limits commute with limits]] (Prop. \ref{LimitsCommuteWithLimits}), hence that in particular [[ends]] commute with [[products]] , and finally the [[enriched Yoneda lemma]] (Prop. \ref{YonedaReductionTopological}), which here is, via Example \ref{NaturalTransformationsViaEnds}, just the plain [[Yoneda lemma]] (Prop. \ref{YonedaLemma}). The end result is hence the same [[Cartesian product]] set that also the set of matching families is defined to be a subset of, in \eqref{SetOfMatching}. This shows that an element in $\int_{V \in \mathcal{C}} \left[ C\left(\{U_i\}_i\right)(V), \, \mathbf{Y}(V) \right]$ is a [[tuple]] $(\phi_i \in \mathbf{Y}(U_i))_i$, subject to some condition. This condition is that for each $V \in \mathcal{C}$ the assignment \begin{displaymath} \itexarray{ C\left(\{U_i\}_i\right)(V) & \longrightarrow & \mathbf{Y}(V) \\ (V \overset{\kappa_i}{\to} U_i) &\mapsto& \kappa_i^\ast \phi_i = \mathbf{Y}(\kappa_i)(\phi_i) } \end{displaymath} constitutes a [[functor]] of [[groupoids]]. By definition of the [[Cech groupoid]], and since the [[codomain]] is a just [[set]] regarded as a [[groupoid]], this is the case precisely if \begin{displaymath} \mathbf{Y}(\kappa_i)(\phi_i) \;=\; \mathbf{Y}(\kappa_j)(\phi_j) \phantom{AAAA} \text{for all}\, i,j \,, \end{displaymath} which is exactly the condition \eqref{GluingCondition} that makes $(\phi_i)_i$ a matching family. \end{proof} $\,$ \hypertarget{local_presentation}{}\subsubsection*{{Local presentation}}\label{local_presentation} We now discuss a more abstract characterization of [[sheaf toposes]], in terms of properties enjoyed by the [[adjunction]] that relates them to the corresponding [[categories of presheaves]]. \begin{defn} \label{LocallyPresentableCategory}\hypertarget{LocallyPresentableCategory}{} \textbf{([[locally presentable category]])} A [[category]] $\mathbf{H}$ (Def. \ref{Categories}) is called \emph{[[locally presentable category|locally presentable]]} if there exists a [[small category]] $\mathcal{C}$ (Def. \ref{SmallCategory}) and a [[reflective subcategory]]-inclusion of $\mathcal{C}$ into its [[category of presheaves]] (Example \ref{CategoryOfPresheaves}) \begin{displaymath} \mathbf{H} \underoverset {\underset{\text{acc}}{\hookrightarrow}} {\overset{\phantom{AA}L\phantom{AA}}{\longleftarrow}} {\bot} [\mathcal{C}^{op}, Set] \end{displaymath} such that the inclusion functor is an \emph{[[accessible functor|accessible functor]]} in that it [[preserved limit|preserves]] $\kappa$-[[filtered colimits]] for some [[regular cardinal]] $\kappa$. \end{defn} \begin{prop} \label{GiraudTheorem}\hypertarget{GiraudTheorem}{} \textbf{([[Giraud's theorem]])} A [[sheaf topos]] (Def. \ref{Sheaf}) is equivalently a [[locally presentable category]] (Def. \ref{LocallyPresentableCategory}) with \begin{enumerate}% \item [[universal colimits]], \item [[effective quotients]], \item [[disjoint coproducts]]. \end{enumerate} \end{prop} \begin{prop} \label{SheafToposViaLexReflection}\hypertarget{SheafToposViaLexReflection}{} \textbf{([[sheaf toposes are equivalently the left exact reflective subcategories of presheaf toposes]])} Let $(\mathcal{C}, \tau)$ be a [[site]] (Def. \ref{Coverage}). Then the [[full subcategory]] inclusion $i \colon Sh(\mathcal{C},\tau) \hookrightarrow PSh(\mathcal{C})$ of its [[sheaf topos]] (Def. \ref{Sheaf}) into its [[category of presheaves]] is a [[reflective subcategory]] inclusion (Def. \ref{ReflectiveSubcategory}) \begin{displaymath} Sh(\mathcal{C},\tau) \underoverset {\underset{\iota}{\hookrightarrow}} {\overset{\phantom{AA}L\phantom{AA}}{\longleftarrow}} {\bot} PSh(\mathcal{C}) \end{displaymath} such that: \begin{enumerate}% \item the inclusion $\iota$ is an [[accessible functor]], thus exhibiting $Sh(\mathcal{C},\tau)$ as a [[locally presentable category]] (Def. \ref{LocallyPresentableCategory}) \item the reflector $L \colon PSh(\mathcal{C}) \to Sh(\mathcal{C})$ (which is [[sheafification]], Prop. \ref{Sheafification}) is [[left exact functor|left exact]] (``lex'') in that it [[preserved limit|preserves]] [[finite limits]]. \end{enumerate} Conversely, every [[sheaf topos]] arises this way. Hence [[sheaf toposes]] $\mathbf{H}$ are equivalently the [[left exact functor|left exact]]-[[reflective subcategory|reflectively]] [[full subcategories]] of [[presheaf toposes]] over some [[small category]] $\mathcal{C}$: \begin{equation} \mathbf{H} \underoverset {\underset{\phantom{AA}acc\phantom{AA}}{\hookrightarrow}} {\overset{\phantom{AA}lex\phantom{AA}}{\longleftarrow}} {\bot} PSh(\mathcal{C}) \label{SheafToposAsLexReflection}\end{equation} \end{prop} (e.g. \href{sheaf+toposes+are+equivalently+the+left+exact+reflective+subcategories+of+presheaf+toposes#Borceux94}{Borceux 94, prop. 3.5.4, cor. 3.5.5}, \href{sheaf+toposes+are+equivalently+the+left+exact+reflective+subcategories+of+presheaf+toposes#Johnstone}{Johnstone, C.2.1.11}) \begin{example} \label{}\hypertarget{}{} \textbf{(left exact reflections of [[categories of presheaves]] are [[locally presentable categories]])} In the characterization of [[sheaf toposes are equivalently the left exact reflective subcategories of presheaf toposes|sheaf toposes as left exact reflections of categories of presheaves]] in Prop. \ref{SheafToposViaLexReflection}, the [[accessible functor|accessibility]] of the inclusion, equivalently the [[locally presentable category|local presentability]] (Def. \ref{LocallyPresentableCategory}) is automatically implied (using the [[adjoint functor theorem]]), as indicated in \eqref{SheafToposAsLexReflection}. \end{example} \end{document}