\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- G-structure and Cartan geometry} \begin{quote}% This entry contains one chapter of \emph{[[geometry of physics]]}. See there for background and context previous chapter \emph{[[geometry of physics -- manifolds and orbifolds]]} \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{structure_and_cartan_geometry}{\textbf{$G$-Structure and Cartan geometry}}\dotfill \pageref*{structure_and_cartan_geometry} \linebreak \noindent\hyperlink{model_layer}{Model Layer}\dotfill \pageref*{model_layer} \linebreak \noindent\hyperlink{structure}{$G$-Structure}\dotfill \pageref*{structure} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{RiemannianGeometry}{Vielbein, orthogonal structure, Riemannian geometry}\dotfill \pageref*{RiemannianGeometry} \linebreak \noindent\hyperlink{electromagnetism_in_gravitational_background}{Electromagnetism in gravitational background}\dotfill \pageref*{electromagnetism_in_gravitational_background} \linebreak \noindent\hyperlink{almost_complex_structure}{Almost complex structure}\dotfill \pageref*{almost_complex_structure} \linebreak \noindent\hyperlink{almost_hermitean_structure}{Almost Hermitean structure}\dotfill \pageref*{almost_hermitean_structure} \linebreak \noindent\hyperlink{almost_symplectic_structure}{Almost symplectic structure}\dotfill \pageref*{almost_symplectic_structure} \linebreak \noindent\hyperlink{metaplectic_structure}{Metaplectic structure}\dotfill \pageref*{metaplectic_structure} \linebreak \noindent\hyperlink{metalinear_structure}{Metalinear structure}\dotfill \pageref*{metalinear_structure} \linebreak \noindent\hyperlink{generalized_complex_geometry}{Generalized complex geometry}\dotfill \pageref*{generalized_complex_geometry} \linebreak \noindent\hyperlink{type_ii_geometry}{Type II geometry}\dotfill \pageref*{type_ii_geometry} \linebreak \noindent\hyperlink{generalized_calabiyau_structure}{Generalized Calabi-Yau structure}\dotfill \pageref*{generalized_calabiyau_structure} \linebreak \noindent\hyperlink{exceptional_generalized_geometry}{Exceptional generalized geometry}\dotfill \pageref*{exceptional_generalized_geometry} \linebreak \noindent\hyperlink{spin_structure_string_structure_fivebrane_structure}{Spin structure, String structure, Fivebrane structure}\dotfill \pageref*{spin_structure_string_structure_fivebrane_structure} \linebreak \noindent\hyperlink{semantics_layer}{Semantics Layer}\dotfill \pageref*{semantics_layer} \linebreak \noindent\hyperlink{syntax_layer}{Syntax Layer}\dotfill \pageref*{syntax_layer} \linebreak \hypertarget{structure_and_cartan_geometry}{}\subsection*{{\textbf{$G$-Structure and Cartan geometry}}}\label{structure_and_cartan_geometry} \hypertarget{model_layer}{}\subsubsection*{{Model Layer}}\label{model_layer} \hypertarget{structure}{}\paragraph*{{$G$-Structure}}\label{structure} \begin{displaymath} \mathbf{B}G \to \mathbf{B}K \end{displaymath} given a $K$-[[principal bundle]] \begin{displaymath} \itexarray{ \tilde X &\to &\mathbf{B}K \\ \downarrow^{\mathrlap{\simeq}} \\ X } \end{displaymath} a [[reduction of the structure group]] along $G \to K$ is \begin{displaymath} \itexarray{ \tilde X &&\to&& \mathbf{B}G \\ & \searrow &\swArrow_{e}& \swarrow \\ && \mathbf{B}K } \end{displaymath} \hypertarget{examples}{}\paragraph*{{Examples}}\label{examples} \hypertarget{RiemannianGeometry}{}\paragraph*{{Vielbein, orthogonal structure, Riemannian geometry}}\label{RiemannianGeometry} \begin{itemize}% \item [[vielbein]], [[orthogonal structure]] \end{itemize} [[reduction of the structure group]] along $\mathbf{B}O(n) \to \mathbf{B}GL(n)$ \begin{displaymath} \itexarray{ \tilde X &&\to&& \mathbf{B}O(n) \\ & {}_{\mathllap{\vdash T \Sigma}}\searrow &\swArrow_{e}& \swarrow \\ && \mathbf{B}GL(n) } \end{displaymath} $e$ is [[vielbein]]: definition of an [[orthonormal frame]] at each point \hypertarget{electromagnetism_in_gravitational_background}{}\paragraph*{{Electromagnetism in gravitational background}}\label{electromagnetism_in_gravitational_background} example: the other 2 [[Maxwell equations]]: $\mathbf{d} \star F = j_{el}$. [[Einstein-Maxwell theory]] \hypertarget{almost_complex_structure}{}\paragraph*{{Almost complex structure}}\label{almost_complex_structure} \begin{itemize}% \item [[almost complex structure]] \end{itemize} \hypertarget{almost_hermitean_structure}{}\paragraph*{{Almost Hermitean structure}}\label{almost_hermitean_structure} \begin{itemize}% \item [[almost Hermitean structure]] \end{itemize} \hypertarget{almost_symplectic_structure}{}\paragraph*{{Almost symplectic structure}}\label{almost_symplectic_structure} \begin{itemize}% \item [[almost symplectic structure]] \end{itemize} \hypertarget{metaplectic_structure}{}\paragraph*{{Metaplectic structure}}\label{metaplectic_structure} \begin{itemize}% \item [[metaplectic structure]] \end{itemize} \hypertarget{metalinear_structure}{}\paragraph*{{Metalinear structure}}\label{metalinear_structure} \begin{itemize}% \item [[metalinear structure]] \end{itemize} \hypertarget{generalized_complex_geometry}{}\paragraph*{{Generalized complex geometry}}\label{generalized_complex_geometry} \begin{itemize}% \item [[generalized complex geometry]] \end{itemize} \hypertarget{type_ii_geometry}{}\paragraph*{{Type II geometry}}\label{type_ii_geometry} \begin{itemize}% \item [[type II geometry]] \end{itemize} \hypertarget{generalized_calabiyau_structure}{}\paragraph*{{Generalized Calabi-Yau structure}}\label{generalized_calabiyau_structure} \begin{itemize}% \item [[generalized Calabi-Yau manifold]] \end{itemize} \hypertarget{exceptional_generalized_geometry}{}\paragraph*{{Exceptional generalized geometry}}\label{exceptional_generalized_geometry} \begin{itemize}% \item [[exceptional generalized geometry]] \end{itemize} \hypertarget{spin_structure_string_structure_fivebrane_structure}{}\paragraph*{{Spin structure, String structure, Fivebrane structure}}\label{spin_structure_string_structure_fivebrane_structure} \begin{itemize}% \item [[spin structure]] \item [[string structure]] \item [[fivebrane structure]] \end{itemize} \hypertarget{semantics_layer}{}\subsubsection*{{Semantics Layer}}\label{semantics_layer} \begin{defn} \label{GStructure}\hypertarget{GStructure}{} Given a homomorphism of groups $G \longrightarrow GL(V)$, a \emph{[[G-structure]]} on a $V$-manifold $X$ is a lift $\mathbf{c}$ of the [[frame bundle]] $\tau_X$ of prop. \ref{FrameBundle} through this map \begin{displaymath} \itexarray{ X && \stackrel{}{\longrightarrow} && G \\ & {}_{\mathllap{\tau_X}}\searrow &\swArrow& \swarrow \\ && \mathbf{B}GL(V) } \,. \end{displaymath} \end{defn} \begin{remark} \label{ModuliForGStructures}\hypertarget{ModuliForGStructures}{} As in remark \ref{ModuliForFramings}, it is useful to express def. \ref{GStructure} in terms of the [[slice topos]] $\mathbf{H}_{/\mathbf{B}GL(V)}$. Write $G\mathbf{Struc}\in \mathbf{H}_{/\mathbf{B}GL(V)}$ for the given map $\mathbf{B}G\to \mathbf{B}GL(V)$ regarded as an object in the slice. Then a $G$-structure according to def. \ref{GStructure} is equivalently a choice of morphism in $\mathbf{H}_{/\mathbf{B}GL(V)}$ of the form \begin{displaymath} \mathbf{c} \;\colon\; \tau_X \longrightarrow G\mathbf{Struc} \,. \end{displaymath} In other words, $G\mathbf{Struc} \in \mathbf{H}_{/\mathbf{B}GL(v)}$ is the \emph{[[moduli stack]]} for $G$-structures. \end{remark} \begin{example} \label{GStructureFromLeftTranslationFraming}\hypertarget{GStructureFromLeftTranslationFraming}{} A choice of [[framing]] $\phi$, def. \ref{Framing}, on a $V$-manifold $X$ induces a [[G-structure]] for any $G$, given by the [[pasting diagram]] in $\mathbf{H}$ \begin{displaymath} \itexarray{ X &\longrightarrow& \ast &\longrightarrow& \\ & \searrow & \downarrow & \swarrow \\ && \mathbf{B}GL(V) } \end{displaymath} or equivalently, via remark \ref{ModuliForFramings} and remark \ref{ModuliForGStructures}, given as the [[composition]] \begin{displaymath} \mathbf{c}_{li} \;\colon\; \tau_X \stackrel{\phi}{\longrightarrow} V\mathbf{Frame} \longrightarrow G\mathbf{Struc}\,. \end{displaymath} We call this the \emph{left invariant $G$-structure}. \end{example} \begin{defn} \label{IntegrabilityOfGStructure}\hypertarget{IntegrabilityOfGStructure}{} For $X$ a $V$-manifold, then a [[G-structure]] on $X$, def. \ref{GStructure}, is \emph{[[integrable G-structure|integrable]]} if for any $V$-[[atlas]] $V \leftarrow U \rightarrow X$ the pullback of the $G$-structure on $X$ to $V$ is equivalent there to the left-inavariant $G$-structure on $V$ of example \ref{GStructureFromLeftTranslationFraming}, i.e. if we have an [[correspondence]] in the double [[slice topos]] $(\mathbf{H}_{/\mathbf{B}GL(V)})_{/G\mathbf{Struc}}$ of the form \begin{displaymath} \itexarray{ && \tau_U \\ & \swarrow && \searrow \\ \tau_V && \swArrow && \tau_X \\ & {}_{\mathllap{\mathbf{c}_{li}}}\searrow && \swarrow_{\mathrlap{\mathbf{c}}} \\ && G \mathbf{Struc} } \,. \end{displaymath} The $G$-structure is \emph{infintesimally integrable} if this holds true at at after restriction along the [[relative shape modality]] $\flat^{rel} U \to U$, def. \ref{RelativeFlat}, to all the infinitesimal disks in $U$: \begin{displaymath} \itexarray{ && \tau_{\flat^{rel}U} \\ & \swarrow && \searrow \\ \tau_V && \swArrow && \tau_X \\ & {}_{\mathllap{\mathbf{c}_{li}}}\searrow && \swarrow_{\mathrlap{\mathbf{c}}} \\ && G \mathbf{Struc} } \,. \end{displaymath} \end{defn} \begin{defn} \label{CartanGeometry}\hypertarget{CartanGeometry}{} Consider an [[infinity-action]] of $GL(V)$ on $V$ which linearizes to the canonical $GL(V)$-action on $\mathbb{D}^V_e$ by def. \ref{GeneralLinearGroup}. Form the [[semidirect product]] $GL(V) \rtimes V$. Consider any group homomorphism $G\to GL(V)$. A \emph{$(G\to G\rtimes V)$-[[Cartan geometry]]} is a $V$-manifold $X$ equipped with a $G$-structure, def. \ref{GStructure}. The Cartan geometry is called \emph{(infinitesimally) integrable} if the $G$-structure is so, according to def. \ref{IntegrabilityOfGStructure}. \end{defn} \begin{remark} \label{}\hypertarget{}{} For $V$ an [[abelian group]], then in traditional contexts the infinitesimal integrability of def. \ref{IntegrabilityOfGStructure} comes down to the [[torsion of a G-structure]] vanishing. But for $V$ a [[nonabelian group]], this definition instead enforces that the torsion is on each [[infinitesimal disk]] the intrinsic left-invariant torsion of $V$ itself. Traditionally this is rarely considered, matching the fact that ordinary [[vector spaces]], regarded as [[translation groups]] $V$, are [[abelian groups]]. But [[super vector spaces]] regarded (in suitable dimension) as [[super translation groups]] are \emph{[[nonabelian groups]]} (we discuss this in detail below in \emph{\hyperlink{SuperMinkowskiSpacetime}{The super-Klein geometry: super-Minkowski spacetime}}). Therefore super-vector spaces $V$ may carry intrinsic torsion, and therefore first-order integrable $G$-structures on $V$-manifolds are torsion-ful. Indeed, this is a phenomenon known as the [[torsion constraints in supergravity]]. Curiously, as discussed there, for the case of [[11-dimensional supergravity]] the [[equations of motion]] of the gravity theory are \emph{equivalent} to the super-Cartan geometry satisfying this torsion constraint. This way super-Cartan geometry gives a direct general abstract route right into the heart of [[M-theory]]. \end{remark} \hypertarget{syntax_layer}{}\subsubsection*{{Syntax Layer}}\label{syntax_layer} (\ldots{}) \end{document}