\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- categories and toposes} \begin{quote}% This entry is one chapter of \emph{[[geometry of physics]]}. next chapters: \emph{[[geometry of physics -- smooth sets|smooth sets]]}, \emph{[[geometry of physics -- supergeometry|supergeometry]]} \end{quote} $\,$ \vspace{.5em} \hrule \vspace{.5em} $\,$ \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] [[category theory|Category theory]] and [[topos theory]] concern the general abstract structure underlying [[algebra]], [[geometry]] and [[logic]]. They are ubiquituous in and indispensible for organizing conceptual mathematical frameworks. We give here an introduction to the basic concepts and results, aimed at providing background for the [[synthetic differential geometry|synthetic]] [[higher differential geometry|higher]] [[geometry of physics -- supergeometry|supergeometry]] of relevance in formulations of fundamental [[physics]], such as used in the chapters \emph{[[geometry of physics -- perturbative quantum field theory|on perturbative quantum field theory]]} and \emph{[[geometry of physics -- fundamental super p-branes|on fundamental super p-branes]]}. For quick informal survey see \emph{[[schreiber:Introduction to Higher Supergeometry]]}. This makes use of the following curious dictionary between [[category theory]]/[[topos theory]] and the [[geometry]] of [[generalized spaces]], which we will explain in detail (following \href{functorial+geometry#Grothendieck65}{Grothendieck 65}, \href{space+and+quantity#Lawvere86}{Lawvere 86, p. 17}, [[Some Thoughts on the Future of Category Theory|Lawvere 91]]): $\,$ \begin{tabular}{l|l|l} $\phantom{A}$[[category theory]]&Rmk. \ref{PresaheavesAsGeneralizedSpaces}&$\phantom{A}$[[geometry]] of [[generalized spaces]]\\ \hline $\phantom{A}$[[presheaf]]&Expl. \ref{CategoryOfPresheaves}&$\phantom{A}$[[generalized space]]\\ $\phantom{A}$[[representable presheaf]]$\phantom{A}$&Expl. \ref{RepresentablePresheaves}$\phantom{A}$&$\phantom{A}$model [[space]] $\phantom{A}$regarded as [[generalized space]]\\ $\phantom{A}$[[Yoneda lemma]]&Prop. \ref{YonedaLemma}$\phantom{A}$&$\phantom{A}$sets of probes of [[generalized spaces]] $\phantom{A}$are indeed $\phantom{A}$sets of maps from model [[spaces]] $\phantom{A}$\\ $\phantom{A}$[[Yoneda embedding]] $\phantom{A}$&Prop. \ref{YonedaEmbedding}$\phantom{A}$&$\phantom{A}$nature of model [[spaces]] is preserved when $\phantom{A}$regarding them as [[generalized spaces]] $\phantom{A}$\\ $\phantom{A}$[[Yoneda embedding]] is$\phantom{A}$ $\phantom{A}$[[free co-completion]]$\phantom{A}$&Prop. \ref{FreeCocompletion}&$\phantom{A}$[[generalized spaces]] really are$\phantom{A}$ $\phantom{A}$glued from ordinary [[spaces]]$\phantom{A}$\\ &&\\ $\phantom{A}$\textbf{[[topos theory]]}&\textbf{Rmk. \ref{SheafConditionAsLocality}}&$\phantom{A}$\textbf{[[local-global principle]] for [[generalized spaces]]}$\phantom{A}$\\ $\phantom{A}$[[coverage]]&Defn. \ref{Coverage}&$\phantom{A}$notion of locality\\ $\phantom{A}$[[sheaf&sheaf condition]]&Defn. \ref{Sheaf}$\phantom{A}$ Prop. \ref{CechGroupoidCoRepresents}\\ $\phantom{A}$[[comparison lemma]]&Prop. \ref{ComparisonLemma}&$\phantom{A}$notion of [[generalized spaces]] $\phantom{A}$independent under change of model [[space]]\\ $\phantom{A}$\textbf{[[gros topos}&gros topos theory]]**&\textbf{Rmk. \ref{CohesiveGeneralizedSpacesAsFoundations}}\\ $\phantom{A}$[[cohesion]]&Defn. \ref{CohesiveTopos}&$\phantom{A}$[[generalized spaces]] obey $\phantom{A}$principles of [[differential topology]]\\ $\phantom{A}$[[differential cohesion]]&Defn. \ref{DifferentialCohesion}&$\phantom{A}$[[generalized spaces]] obey $\phantom{A}$principles of [[differential geometry]]\\ $\phantom{A}$super cohesion$\phantom{A}$&Defn. \ref{SuperDifferentialCohesion}&$\phantom{A}$[[generalized spaces]] obey $\phantom{A}$principles of [[supergeometry]]\\ \end{tabular} The perspective is that of \emph{[[functorial geometry]]} (\hyperlink{functorial+geometry#Grothendieck65}{Grothendieck 65}). (For more exposition of this point see also at \emph{[[motivation for sheaves, cohomology and higher stacks]]}.) This dictionary implies a wealth of useful tools for handling and reasoning about [[geometry]]: We discuss \hyperlink{BasicNotionsOfToposTheory}{below} that [[sheaf toposes]], regarded as [[categories]] of [[generalized spaces]] via the above disctionary, are ``convenient contexts'' for geometry (Prop. \ref{PropertiesOfSheafToposes} below), in the technical sense that they provide just the right kind of generalization that makes all desireable constructions on spaces actually exist: \begin{tabular}{l|l} $\phantom{A}$[[sheaf topos]]$\phantom{A}$&$\phantom{A}$as [[category]] of [[generalized spaces]] $\phantom{A}$\\ \hline $\phantom{A}$[[Yoneda embedding]]: $\phantom{A}$&$\phantom{A}$contains and generalizes ordinary [[spaces]] $\phantom{A}$\\ $\phantom{A}$has all [[limits]]: $\phantom{A}$&$\phantom{A}$contains all [[Cartesian products]] and [[intersections]] $\phantom{A}$\\ $\phantom{A}$has all [[colimits]]: $\phantom{A}$&$\phantom{A}$contains all [[disjoint unions]] and [[quotients]]\\ $\phantom{A}$[[cartesian closed category&cartesian closure]]: $\phantom{A}$\\ $\phantom{A}$[[locally cartesian closed category&local cartesian closure]]: $\phantom{A}$\\ \end{tabular} Notably [[mapping spaces]] play a pivotal role in [[physics]], in the guise of [[spaces of field histories]], but fall outside the applicability of traditional formulations of [[geometry]] based on just [[manifolds]]. [[topos theory|Topos theory]] provides their existence (Prop. \ref{PropertiesOfSheafToposes} below) and the relevant infrastructure, for example for the construction of [[transgression of differential forms]] to mapping spaces of [[smooth sets]], that is the basis for [[sigma-model]]-[[field theories]]. This is discussed in the following chapters \emph{[[geometry of physics -- smooth sets|on smooth sets]]} and \emph{[[geometry of physics -- supergeometry|on supergeometry]]}. In conclusion, one motivation for [[category theory]] and [[topos theory]] is \emph{a posteriori}: As a matter of experience, there is just no other toolbox that allows to deeply understand and handle the [[geometry of physics]]. Similar comments apply to a wealth of other topics of mathematics. We offer also an \emph{a priori} motivation: \emph{Category theory is the theory of duality.} \emph{[[duality|Duality]]} is of course an ancient notion in [[philosophy]]. At least as a term, it makes a curious re-appearance in the conjectural [[theory (physics)|theory]] of fundamental [[physics]] formerly known as \emph{[[string theory]]}, as \emph{[[duality in string theory]]}. In both cases, the literature left some room in delineating what precisely is meant. But the philosophically inclined mathematician could notice (see \href{adjoint+functor#Lambek82}{Lambek 82}) that an excellent candidate to make precise the idea of \emph{[[duality]]} is the mathematical concept of \emph{[[adjoint functor|adjunction]]}, from [[category theory]]. This is particularly pronounced for \emph{[[adjoint triples]]} (Remark \ref{AdjointTriples} below) and their induced [[adjoint modalities]] ([[Some Thoughts on the Future of Category Theory|Lawvere 91]], see Def. \ref{AdjointModality} below), which exhibit a given ``[[modality|mode of being]]'' of any object $X$ as intermediate between two dual opposite extremes (Prop. \ref{ComparisonMorphismBetweenOppositeExtremes} below): \begin{displaymath} \Box X \overset{\phantom{AAAA}}{\longrightarrow} X \overset{\phantom{AAAA}}{\longrightarrow} \bigcirc X \end{displaymath} For example, \emph{[[cohesion|cohesive]]} [[geometry|geometric]] [[structure]] on [[generalized spaces]] is captured, this way, as [[modality]] in between the [[discrete object|discrete]] and the [[codiscrete object|codiscrete]] (Example \ref{DiscreteTopologicalSpaces}, and Def. \ref{CohesiveTopos} below). Historically, [[category theory]] was introduced in order to make precise the concept of \emph{[[natural transformation]]}: The concept of \emph{[[functors]]} was introduced just so as to support that of natural transformations, and the concept of \emph{[[categories]]} only served that of functors (see e.g. \href{category+theory#Freyd65}{Freyd 65, Part II}). But natural transformations are, in turn, exactly the basis for the concept of \emph{[[adjoint functors]]} (Def. \ref{AdjointFunctorsInTermsOfNaturalBijectionOfHomSets} below), equivalently \emph{[[adjunctions]] between categories} (Prop. \ref{AdjointnessInTermsOfHomIsomorphismEquivalentToAdjunctionInCat} below), shown on the left. All \emph{[[universal constructions]]}, the heart of category theory, are special cases of [[adjoint functors]] -- hence of dualities, if we follow \href{adjoint+functor#Lambek82}{Lambek 82}: This includes the concepts of \emph{[[limits]]} and \emph{[[colimits]]} (Def. \ref{Limits} below), [[ends]] and [[coends]] (Def. \ref{EndAndCoendInTopcgSmash} below) [[Kan extensions]] (Prop. \ref{TopologicalLeftKanExtensionBCoend} below), and the behaviour of these constructions, such as for instance the [[free co-completion]] nature of the [[Yoneda embedding]] (Prop. \ref{FreeCocompletion} below). $\,$ $\,$ $\,$ Therefore it makes sense to regard category theory as the \textbf{theory of adjunctions}, hence the \textbf{theory of duality}: $\,$ \newline | $\phantom{A}$[[adjoint triple|adjunction of adjunctions]]$\phantom{A}$ $\phantom{AA}$[[adjoint triple|duality of dualities]]$\phantom{A}$ | $\phantom{A}$Def. \ref{AdjunctionofAdjunction}$\phantom{A}$ | | $\phantom{A}$Def. \ref{QuillenAdjointTriple}$\phantom{A}$ |\newline | $\phantom{A}$ [[adjoint equivalence]]$\phantom{A}$ $\phantom{AA}$[[adjoint equivalence|dual equivalence]] $\phantom{AA}$ | $\phantom{A}$ Def. \ref{AdjointEquivalenceOfCategories} $\phantom{A}$ | $\phantom{A}$ Def. \ref{EnrichedEquivalenceOfCategories} $\phantom{A}$ | $\phantom{A}$Def. \ref{QuillenEquivalence} | | $\phantom{A}$ [[adjoint functor|adjunction]]$\phantom{A}$ $\phantom{AA}$[[duality]]$\phantom{A}$ | $\phantom{A}$ Def. \ref{AdjointFunctorsInTermsOfNaturalBijectionOfHomSets} $\phantom{A}$ | $\phantom{A}$ Def. \ref{EnrichedAdjunction} $\phantom{A}$ | $\phantom{A}$Def. \ref{QuillenAdjunction} | | $\phantom{A}$ [[natural transformation]] $\phantom{A}$ | $\phantom{A}$ Def. \ref{NaturalTransformations} $\phantom{A}$ | $\phantom{A}$ Def. \ref{EnrichedNaturalTransformation} $\phantom{A}$ | | | $\phantom{A}$ [[functor]] $\phantom{A}$ | $\phantom{A}$ Def. \ref{Functors} $\phantom{A}$ | $\phantom{A}$ Def. \ref{TopologicallyEnrichedFunctor} $\phantom{A}$ | | | $\phantom{A}$ [[category]] $\phantom{A}$ | $\phantom{A}$ Def. \ref{Categories} $\phantom{A}$ | $\phantom{A}$ Def. \ref{TopEnrichedCategory} $\phantom{A}$ | $\phantom{A}$ Def. \ref{ModelCategory} | The pivotal role of [[adjunctions]] in [[category theory]] (\href{adjoint+functor#fn:1}{Lawvere 08}) and in the [[foundations of mathematics]] ([[Adjointness in Foundations|Lawvere 69]], [[Cohesive Toposes and Cantor's lauter Einsen|Lawvere 94]] ) was particularly amplified by [[F. W. Lawvere]]\footnote{``the universality of the concept of adjointness, which was first isolated and named in the conceptual sphere of category theory'' (\href{adjoint+functor#Lawvere69#Lawvere69}{Lawvere 69}) ``In all those areas where category theory is actively used the categorical concept of adjoint functor has come to play a key role.'' (first line from \emph{\href{https://ncatlab.org/nlab/show/William+Lawvere#Interview07}{An interview with William Lawvere}}, paraphrasing the first paragraph of \emph{\href{William+Lawvere#TakingCategoriesSeriously}{Taking categories seriously}})} . Moreover, [[Lawvere]] saw the future of category theory ([[Some Thoughts on the Future of Category Theory|Lawvere 91]]) as concerned with [[adjunctions]] expressing systems of archetypical dualities that reveal foundations for [[geometry]] (\href{cohesive+topos#LawvereAxiomatic}{Lawvere 07}) and [[physics]] ([[Toposes of laws of motion|Lawvere 97]], see Def. \ref{CohesiveTopos} and Def. \ref{DifferentialCohesion} below). He suggested (\href{objective+and+subjective+logic#Lawvere94}{Lawvere 94}) this as a precise formulation of core aspects of the \emph{theory of everything} of early 19th century [[philosophy]]: [[Hegel]]`s \emph{[[Science of Logic]]}. These days, of course, \emph{[[theories of everything]]}, such as [[string theory]], are understood less ambitiously than Hegel's ontological process, as mathematical formulations of fundamental theories of physics, that could conceptually unify the hodge-podge of currently available ``standard models'' [[standard model of particle physics|of particle physics]] and [[standard model of cosmology|of cosmology]] to a more coherent whole. The idea of \emph{[[duality in string theory]]} refers to different perspectives on physics that appear dual to each other while being \emph{equivalent}. But one of the basic results of category theory (Prop. \ref{EveryEquivalenceOfCategoriesComesFromAnAdjointEquivalence}, below) is that equivalence is indeed a special case of adjunction. This allows to explore the possibility that there is more than a coincidence of terms. Of course the usage of the term \emph{[[duality in string theory]]} is too loose for one to expect to be able to refine each occurrence of the term in the literature to a mathematical adjunction. However, we will see mathematical formalizations of core aspects of key string-theoretic dualities, such as \emph{[[topological T-duality]]} and the \emph{[[duality between M-theory and type IIA string theory]]}, in terms of [[adjunctions]]. Indeed, at the heart of these \emph{[[dualities in string theory]]} is the phenomenon of \emph{[[double dimensional reduction]]}, which turns out to be formalized by one of the most fundamental adjunctions in ([[higher category theory|higher]]) [[category theory]]: \emph{[[base change]]} along the point inclusion into a [[classifying space]]. All this is discussed in the chapter on \emph{[[geometry of physics -- fundamental super p-branes|fundamental super p-branes]]}. This suggests that there may be a deeper relation here between the superficially alien uses of the word ``duality'', that is worth exploring. In this respect it is worth noticing that core structure of string/M-theory arises via [[universal constructions]] from the [[superpoint]] (as explained in the chapter \emph{[[geometry of physics -- fundamental super p-branes|on fundamental super p-branes]]}), while the superpoint itself arises, in a sense made precise by [[category theory]], ``from nothing'', by a system of twelve [[adjunctions]] (explained in the chapter [[geometry of physics -- supergeometry|on supergeometry]]). $\,$ Here we introduce the requisites for understanding these statements. $\,$ \hypertarget{contents}{}\section*{{Contents}}\label{contents} [[!include geometry of physics – basic notions of category theory]] $\,$ [[!include geometry of physics - basic notions of categorical algebra]] $\,$ [[!include geometry of physics - universal constructions]] $\,$ [[!include geometry of physics - basic notions of topos theory]] $\,$ [[!include geometry of physics - cohesive toposes]] $\,$ [[!include geometry of physics -- homotopy types]] $\,$ [[!include geometry of physics -- basic notions of higher topos theory]] [[!redirects geometry of physics -- categories and toposes]] [[!redirects geometry of physics -- Categories and Toposes]] \end{document}