\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- de Rham coefficients} \begin{quote}% This entry is gouing to contain one chapter of \emph{[[geometry of physics]]}. previous chapters: \emph{\href{geometry+of+physics#FlatConnections}{flat connections}} next chapter: \emph{\href{geometry+of+physics#PrincipalConnections}{principal connections}} \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{de_rham_coefficients}{}\subsection*{{De Rham coefficients}}\label{de_rham_coefficients} \hypertarget{model_layer}{}\subsubsection*{{Model Layer}}\label{model_layer} \hypertarget{liealgebra_valued_differential_1forms}{}\paragraph*{{Lie-algebra valued differential 1-forms}}\label{liealgebra_valued_differential_1forms} \begin{defn} \label{SheafOfLieAlgebraValuedForms}\hypertarget{SheafOfLieAlgebraValuedForms}{} Let $G$ be a [[Lie group]], and write $\mathfrak{g}$ for its [[Lie algebra]]. The set of [[Lie algebra valued differential 1-forms]] is the [[tensor product]] \begin{displaymath} \Omega^1(U,\mathfrak{g}) = \Omega^1(U) \otimes_{\mathbb{R}} \mathfrak{g} \,. \end{displaymath} flat forms: \begin{displaymath} \Omega^1_{flat}(U, \mathfrak{g}) = \left\{ \omega \in \Omega^1(U,\mathfrak{g}) | F_\omega = \mathbf{d} \omega + [\omega, \omega] = 0 \right\} \,. \end{displaymath} \end{defn} (\ldots{}) This is a [[smooth space]] \begin{displaymath} \Omega^1_{flat}(-,\mathfrak{g}) \in Smooth 0 Type \end{displaymath} For $\mathfrak{g} = Lie(\mathbb{R})$ we have \begin{displaymath} \Omega^1(-,Lie(\mathbb{R})) = \Omega^1 \end{displaymath} and we write \begin{displaymath} \Omega^1_{flat}(-,Lie(\mathbb{R})) = \Omega^1_{cl} \end{displaymath} Below we see \begin{displaymath} \flat_{dR}\mathbf{B}G \simeq \Omega^1_{flat}(-,\mathfrak{g}) \end{displaymath} \hypertarget{the_de_rham_complex}{}\paragraph*{{The de Rham complex}}\label{the_de_rham_complex} \begin{itemize}% \item [[de Rham complex]] \item [[de Rham cohomology]] \item [[de Rham theorem]] \end{itemize} Below we see that \begin{displaymath} \flat_{dR}\mathbf{B}^n \mathbb{R} \simeq \flat_{dR}\mathbf{B}^n U(1) \simeq DK[ \Omega^1(-) \stackrel{\mathbf{d}}{\to} \Omega^2(-) \stackrel{\mathbf{d}}{\to}\cdots \stackrel{\mathbf{d}}{\to} \Omega^n_{cl}(-)] \,. \end{displaymath} \hypertarget{semantic_layer}{}\subsubsection*{{Semantic Layer}}\label{semantic_layer} \hypertarget{de_rham_coefficient_objects}{}\paragraph*{{De Rham coefficient objects}}\label{de_rham_coefficient_objects} \begin{defn} \label{deRhamCoefficientObject}\hypertarget{deRhamCoefficientObject}{} For $G \in Gpr(\mathbf{H})$, its \textbf{de Rham coefficient object} is the [[homotopy pullback]] \begin{displaymath} \flat_{dR} \mathbf{B}G \coloneqq \flat \mathbf{B}G \times_{\mathbf{B}G} * \end{displaymath} in \begin{displaymath} \itexarray{ \flat_{dR} \mathbf{B}G &\stackrel{UnderlyingConnection}{\to}& \flat \mathbf{B}G \\ \downarrow &pb& \downarrow^{\mathrlap{UnderlyingBundle}} \\ * &\to& \mathbf{B}G } \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} This pullback diagram expresses that [[generalized element|elements]] of $\flat_{dR}\mathbf{B}G$ are flat $G$-connections $\nabla \colon X \to \flat \mathbf{B}G$, def. \ref{FlatCohesiveConnection} equipped with a trivialization of their underlying $G$-principal bundle, def. \ref{UnderlyingBundleOfFlatConnection}. \end{remark} \hypertarget{OrdinaryDifferentialFormsFromSmoothCohesion}{}\paragraph*{{Recovering smooth differential forms from cohesive de Rham coefficients}}\label{OrdinaryDifferentialFormsFromSmoothCohesion} Let $\mathbf{H} =$ [[Smooth∞Grpd]]. All [[smooth manifolds]] and sheaves on smooth manifolds etc. in the following are canonically regarded as objects in this $\mathbf{H} = Sh_\infty(CartSp)$. \begin{prop} \label{DeRhamCoefficientsOfLieGroup}\hypertarget{DeRhamCoefficientsOfLieGroup}{} For $G$ a [[Lie group]], the de Rham coefficient object $\flat_{dR}\mathbf{B}G$, def. \ref{deRhamCoefficientObject} of its [[delooping]] is given by the [[sheaf]] of flat [[Lie algebra valued differential 1-forms]] $\Omega^1_{flat}(-,\mathfrak{g})$, def. \ref{SheafOfLieAlgebraValuedForms}, for $\mathfrak{g}$ the [[Lie algebra]] of $G$: \begin{displaymath} \flat_{dR}\mathbf{B}G \simeq \Omega^1_{flat}(-,\mathfrak{g}) \,. \end{displaymath} \end{prop} This is discussed at \emph{\href{smooth+infinity-groupoid+--+structures#deRhamWithCoefficientsInBOfLieGroup}{smooth ∞-groupoid - structures - de Rham coefficients for BG with G a Lie group}}. Write $U(1)$ for the [[circle group]] regared as a [[Lie group]] in the standard way. \begin{prop} \label{}\hypertarget{}{} For $n \in \mathbb{N}$, the de Rham coefficient object $\flat_{dR}\mathbf{B}^n U(1)$, def. \ref{deRhamCoefficientObject}, of the $n$-fold [[delooping]] of $U(1)$ is given by the image under the [[Dold-Kan correspondence]] \begin{displaymath} DK \colon : Sh(CartSp, Ch_\bullet) \to Sh(CartSp, sSet) \to L_{lwhe} Sh(CartSp, sSet) \simeq \mathbf{H} \end{displaymath} of the truncated [[de Rham complex]] of sheaves of differential forms, \begin{displaymath} \begin{aligned} \flat_{dR}\mathbf{B}^n U(1) &\simeq \flat_{dR} \mathbf{B}^n \mathbb{R} \\ & \simeq DK[\Omega^1(-) \stackrel{\mathbf{d}}{\to} \cdots \stackrel{\mathbf{d}}{\to} \Omega^n_{cl}(-)] \\ & \simeq DK[\Omega^1_{cl}(-) \to 0 \to \cdots \to 0] \end{aligned} \,. \end{displaymath} \end{prop} This is discussed at \emph{\href{smooth+infinity-groupoid+--+structures#deRhamCoefficientsInBnU1}{smooth ∞-groupoid - structures - de Rham coefficients for the circle n-groups}}. \hypertarget{syntactic_layer}{}\subsubsection*{{Syntactic Layer}}\label{syntactic_layer} \begin{displaymath} \begin{aligned} \flat_{dR}(\mathbf{B}G \colon Type)\; \colon & Type \\ \coloneqq & \;\; \sum_{\nabla \colon \flat \mathbf{B}G} ( UnderlyingBundle(\nabla) = * ) \end{aligned} \end{displaymath} \hypertarget{MaurerCartanForms}{}\subsection*{{\textbf{Maurer-Cartan forms}}}\label{MaurerCartanForms} \hypertarget{MaurerCartanLayerMod}{}\subsubsection*{{Model Layer}}\label{MaurerCartanLayerMod} \hypertarget{MaurerCartanFormOnLieGroup}{}\paragraph*{{Maurer-Cartan form on a Lie group}}\label{MaurerCartanFormOnLieGroup} \begin{itemize}% \item [[Maurer-Cartan form]] \end{itemize} \begin{displaymath} \theta_G \colon G \to \Omega^1_{flat}(-,\mathfrak{g}) \end{displaymath} Consider \begin{displaymath} \flat_{dR} \mathbf{B}\mathbb{R} = \Omega^1_{cl} \end{displaymath} the Maurer-Cartan form on $\mathbb{R}$ is the [[de Rham differential]] \begin{displaymath} \theta_{\mathbb{R}} = \mathbf{d} \colon \mathbb{R} \to \Omega^1_{cl} \hookrightarrow \Omega^1 \,. \end{displaymath} \hypertarget{semantic_layer_2}{}\subsubsection*{{Semantic Layer}}\label{semantic_layer_2} \hypertarget{maurercartan_form_on_a_cohesive_group}{}\paragraph*{{Maurer-Cartan form on a cohesive $\infty$-group}}\label{maurercartan_form_on_a_cohesive_group} Let $\mathbf{H}$ be a [[cohesive (infinity,1)-topos]] $(\mathbf{\Pi} \dashv \flat \dashv \sharp)$. We discuss a general formulation of [[Maurer-Cartan forms]] on cohesive [[infinity-groups]] Let $G \in Grp(\mathbf{H})$ be a [[group object in an (infinity,1)-category|group object]]. Use the [[pasting law]] together with the fact that $\flat$ is [[right adjoint]] and hence preserves [[limits]] to get $\theta$ in \begin{displaymath} \itexarray{ G &\to& * \\ \downarrow^{\mathrlap{\theta}} & pb & \downarrow \\ \flat_{dR} \mathbf{B}G &\to& \flat \mathbf{B}G \\ \downarrow &pb& \downarrow \\ * &\to& \mathbf{B}G } \end{displaymath} \begin{defn} \label{GeneralAbstractMaurerCartanForm}\hypertarget{GeneralAbstractMaurerCartanForm}{} This is the \textbf{[[Maurer-Cartan form]]} on $G$ \begin{displaymath} \theta \;\colon\; G \to \flat_{dR} \mathbf{B}G \,. \end{displaymath} \end{defn} \begin{defn} \label{DifferentiationOfInfinityGroupValuedFunction}\hypertarget{DifferentiationOfInfinityGroupValuedFunction}{} For $S \;\colon\; X \to G$ a morphism, write \begin{displaymath} S^{-1} \mathbf{d} S \coloneqq S^* \theta_G \;\colon\; X \stackrel{S}{\to} G \stackrel{\theta_G}{\to} \flat_{dR}\mathbf{B}G \end{displaymath} for its composite with the map of def. \ref{GeneralAbstractMaurerCartanForm}, hence the \textbf{pullback of the Maurer-Cartan form along $S$}. We also call this the \textbf{[[de Rham differential]]} of $S$. \end{defn} \hypertarget{maurercartan_forms_on_smooth_groups}{}\paragraph*{{Maurer-Cartan forms on smooth $\infty$-groups}}\label{maurercartan_forms_on_smooth_groups} \begin{prop} \label{}\hypertarget{}{} For $G$ a [[Lie group]] canonically regarded in $\mathbf{H} =$[[Smooth∞Grpd]] the general abstract morphism \begin{displaymath} \theta_G \colon G \to \flat_{dR}\mathbf{B}G \end{displaymath} is identified, via the identification $\flat_{dR}\mathbf{B}G \simeq \Omega^1_{flat}(-,\mathfrak{g})$ of prop. \ref{DeRhamCoefficientsOfLieGroup} and the [[Yoneda lemma]], with the traditional [[Maurer-Cartan form]] \begin{displaymath} \theta_G \in \Omega^1_{flat}(G, \mathfrak{g}) \,. \end{displaymath} \end{prop} \hypertarget{CohesiveDifferentiation}{}\paragraph*{{Cohesive differentiation}}\label{CohesiveDifferentiation} The Maurer-Cartan form on the [[line object]] \begin{displaymath} \theta_{\mathbb{R}} \colon \mathbb{R} \to \Omega^1_{cl}(-,\mathbb{R}) \end{displaymath} is the [[de Rham differential]], \begin{displaymath} \mathbf{d} = \theta_{\mathbb{R}} \,. \end{displaymath} \hypertarget{universal_curvature_characteristic_forms}{}\paragraph*{{Universal curvature characteristic forms}}\label{universal_curvature_characteristic_forms} For $G = \mathbf{B}^n U(1)$ \begin{displaymath} curv \colon \mathbf{B}^n U(1) \to \flat_{dR} \mathbf{B}^{n+1}U(1) \end{displaymath} sends a circle $n$-bundle to the curvature of a pseudo-connection on it. \hypertarget{syntactic_layer_2}{}\subsubsection*{{Syntactic Layer}}\label{syntactic_layer_2} (\ldots{}) \end{document}