\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- differentiation} \begin{quote}% This entry contains one chapter of the material at \emph{[[geometry of physics]]}. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Differentiation}{\textbf{Differentiation}}\dotfill \pageref*{Differentiation} \linebreak \noindent\hyperlink{DifferentiationLayerMod}{Model Layer}\dotfill \pageref*{DifferentiationLayerMod} \linebreak \noindent\hyperlink{DifferentiationOfSmoothFunctionsAndDifferentialForms}{Differentiation of smooth functions and differential forms}\dotfill \pageref*{DifferentiationOfSmoothFunctionsAndDifferentialForms} \linebreak \noindent\hyperlink{DifferentiationOnCoordinatePatches}{Differentiation on coordinate patches}\dotfill \pageref*{DifferentiationOnCoordinatePatches} \linebreak \noindent\hyperlink{DifferentiationOnSmoothSpaces}{Differentiation on smooth spaces}\dotfill \pageref*{DifferentiationOnSmoothSpaces} \linebreak \noindent\hyperlink{ElectromagneticFieldStrength}{Example: The electromagnetic field strength}\dotfill \pageref*{ElectromagneticFieldStrength} \linebreak \noindent\hyperlink{VariationalCalculus}{Variational calculus}\dotfill \pageref*{VariationalCalculus} \linebreak \noindent\hyperlink{discrete_points_of_a_smooth_space}{Discrete points of a smooth space}\dotfill \pageref*{discrete_points_of_a_smooth_space} \linebreak \noindent\hyperlink{SmoothFunctionals}{Smooth functionals}\dotfill \pageref*{SmoothFunctionals} \linebreak \noindent\hyperlink{FunctionalDerivative}{Functional derivative / variational derivative}\dotfill \pageref*{FunctionalDerivative} \linebreak \noindent\hyperlink{EulerLagrangeEquations}{Euler-Lagrange equations}\dotfill \pageref*{EulerLagrangeEquations} \linebreak \noindent\hyperlink{DGeometry}{$\mathcal{D}$-geometry}\dotfill \pageref*{DGeometry} \linebreak \noindent\hyperlink{infinitesimal_smooth_loci}{Infinitesimal smooth loci}\dotfill \pageref*{infinitesimal_smooth_loci} \linebreak \noindent\hyperlink{de_rham_space}{de Rham space}\dotfill \pageref*{de_rham_space} \linebreak \noindent\hyperlink{jet_bundles}{Jet bundles}\dotfill \pageref*{jet_bundles} \linebreak \noindent\hyperlink{DifferentiationLayerSem}{Semantic Layer}\dotfill \pageref*{DifferentiationLayerSem} \linebreak \noindent\hyperlink{synthetic_differential_geometry}{Synthetic differential geometry}\dotfill \pageref*{synthetic_differential_geometry} \linebreak \noindent\hyperlink{tangent_bundle}{Tangent bundle}\dotfill \pageref*{tangent_bundle} \linebreak \noindent\hyperlink{differential_equations}{Differential equations}\dotfill \pageref*{differential_equations} \linebreak \noindent\hyperlink{DifferentialCohesionOfToposOfSmoothSpaces}{Differential cohesion of the topos of smooth spaces}\dotfill \pageref*{DifferentialCohesionOfToposOfSmoothSpaces} \linebreak \noindent\hyperlink{DifferentialCohesion}{Differential cohesion}\dotfill \pageref*{DifferentialCohesion} \linebreak \noindent\hyperlink{DifferentiationSemLayerDeRhamSpace}{de Rham space}\dotfill \pageref*{DifferentiationSemLayerDeRhamSpace} \linebreak \noindent\hyperlink{DifferentiationSemLayerJetBundle}{Jet bundle}\dotfill \pageref*{DifferentiationSemLayerJetBundle} \linebreak \noindent\hyperlink{formally_tale__formally_unramified__formally_smooth}{Formally \'e{}tale / formally unramified / formally smooth}\dotfill \pageref*{formally_tale__formally_unramified__formally_smooth} \linebreak \noindent\hyperlink{syntactic_layer}{Syntactic Layer}\dotfill \pageref*{syntactic_layer} \linebreak \noindent\hyperlink{differential_homotopy_type_theory}{Differential homotopy type theory}\dotfill \pageref*{differential_homotopy_type_theory} \linebreak \hypertarget{Differentiation}{}\subsection*{{\textbf{Differentiation}}}\label{Differentiation} So far we have dealt with \emph{cohesive} structures for which there is a notion of \emph{smooth variation}, say of the position of a [[particle]] along a [[trajectory]] in [[spacetime]]. The idea of \emph{differentiation} is to measure the \emph{[[difference]]} between the position of two points on a cohesive trajectory in space as the difference between their [[worldline]] coordinates ``tends to 0'' without actually becoming 0. One also says that differentiation is forming ``[[infinitesimal space|infinitesimal]] differences'' of a cohesive process -- and we will make precise here what this means. There are two stages to the theory of differentiation: \begin{enumerate}% \item We may think of differentiation as just a means to analyze more in detail the [[cohesive topos|cohesive structure]] already given, without adding new [[structure]], hence without a priori refining our notion of what a ``[[cohesion|cohesive]] [[trajectory]]'' is. Indeed, given any [[line object]] $\mathbb{R}$ in a [[cohesive ∞-topos]], there is canonically a homomorphism of cohesive spaces \begin{displaymath} \mathbf{d} \colon \mathbb{R} \to \Omega^1_{cl}(-,\mathbb{R}) \end{displaymath} from the line to the cohesive moduli space of closed [[differential 1-forms]], which is such that it sends a cohesive curve on the line to the differential form on this curve whose value at each point is the \emph{differential} of the curve, its rate of infinitesimal change at that point. Below in \emph{\hyperlink{DifferentiationOfSmoothFunctionsAndDifferentialForms}{Differentiation of smooth functions and differetial forms}} we discuss this construction in the standard model of [[smooth infinity-groupoid|smooth cohesion]] for [[smooth spaces]], where it reproduces what traditionally is called the \emph{[[de Rham differential]]} $\mathbf{d}$. Further below in \emph{\hyperlink{CohesiveDifferentiation}{Maurer-Cartan forms -- Cohesive differentiation}} we show how $\mathbf{d}$ comes out from just the abstract axioms of cohesionn. \item We may think of differentiation as reflecting a refinement of smooth cohesion such that [[infinitesimal space|infinitesimal]] cohesive trajectories actually exist. Here, on top of having a \emph{measure} for how a cohesive trajectory changes infinitesimally at a given point, it makes sense to ask concretely if two points on a trajectory are infinitesimally close to each other. In this approach the very notion of cohesion is refined to include \emph{explicitly} a way to speak not just about a ``cohesive blob of points'', but to decide whether it is in fact just an ``infinitesimal cohesive blob of points'' -- an \emph{[[infinitesimally thickened point]]}. [[differential geometry|Differential geometry]] with such an explicit notion of [[infinitesimal space|infinitesimals]] is known as \emph{[[synthetic differential geometry]]}: the [[axioms]] here allow one to \emph{synthesize} an [[infinitesimally thickened point]] and not just to reason about it \emph{as if} it existed. In such a synthetic differential context then the differential $\mathbf{d}$ from above not just exists as a whole, but we can ``take it apart and re-synthesize it'' by realizing its value at each point literally as the ordinary [[difference]] between two \emph{infinitesimally close} points. Similarly, various other fundamental constructions in [[differential geometry]], such as that of [[tangent bundles]] and [[jet bundles]] have a usefully transparent axiomatic characterization in the presence of synthetic infinitesimals. ([[Sophus Lie]], one of the founding fathers of [[differential geometry]] \href{synthetic+differential+geometry#SophusLieQuote}{famously said} that he indeed found his theorems using such synthetic reasoning intuitively, and just did not publish them this way due to a lack of formalization of this language -- at his time. ) This we discuss in the Mod Layer in \emph{\hyperlink{DGeometry}{D-geometry}} below. \end{enumerate} In the \hyperlink{DifferentiationLayerSem}{Differentiation semantic layer} below we formalize differentiation, and these two aspects of it, by adding to the notion of \emph{[[cohesive topos]]} that of an \emph{[[infinitesimal cohesion|infinitesimal cohesive neighbourhood]]}. Recalling that a [[cohesive topos]] is an abstract \emph{cohesive blob}, an infinitesimal cohesive neighbourhood is accordingly an infinitesimally thicked cohesive blob (which is itself again a cohesive blob): \begin{displaymath} \itexarray{ CohesiveBlob &&\hookrightarrow&& InfinitesimallyThickenedCohesiveBlob \\ & \searrow && \swarrow \\ && Point } \;\;\;\;\;\;\;\; \itexarray{ \mathbf{H} &&\stackrel{}{\hookrightarrow}&& \mathbf{H}_{th} \\ & \searrow && \swarrow \\ && DiscSpaces } \,. \end{displaymath} \hypertarget{DifferentiationLayerMod}{}\subsubsection*{{Model Layer}}\label{DifferentiationLayerMod} We discuss \begin{itemize}% \item \hyperlink{DifferentiationOfSmoothFunctionsAndDifferentialForms}{Differentiation of smooth functions and differential forms} \begin{itemize}% \item first just \emph{\hyperlink{DifferentiationOnCoordinatePatches}{on coordinate patches}} \item and then \emph{\hyperlink{DifferentiationOnSmoothSpaces}{on general smooth spaces}}. \end{itemize} \end{itemize} By considering [[fiber products]] of smooth [[mapping spaces]] with [[discrete spaces]] of boundary configurations, we obtain from this the differentiation theory called \begin{itemize}% \item \emph{\hyperlink{VariationalCalculus}{Variational calculus}} \begin{itemize}% \item with the notion of \emph{\hyperlink{SmoothFunctionals}{Smooth functional}} \item and \emph{\hyperlink{FunctionalDerivative}{Variational derivative}} of smooth functionals. \item The central class of examples of this of interest in physics is the variation of [[action functionals]] that yields the [[Euler-Lagrange equations|Euler-Lagrange]] [[equations of motion]] in [[classical field theory]]. This we discuss in \emph{\hyperlink{EulerLagrangeEquations}{Euler-Lagrange equations}}. \end{itemize} \end{itemize} \hypertarget{DifferentiationOfSmoothFunctionsAndDifferentialForms}{}\paragraph*{{Differentiation of smooth functions and differential forms}}\label{DifferentiationOfSmoothFunctionsAndDifferentialForms} \hypertarget{DifferentiationOnCoordinatePatches}{}\paragraph*{{Differentiation on coordinate patches}}\label{DifferentiationOnCoordinatePatches} By definition to [[smooth function]] $f \colon \mathbb{R} \to \mathbb{R}$ is associated its [[derivative]], a smooth function $f' \colon \mathbb{R} \to \mathbb{R}$. And more generally to a smooth function $f \colon \mathbb{R}^n \to \mathbb{R}$ are associated its [[partial derivatives]], smooth functions \begin{displaymath} \frac{\partial f}{\partial x^i} \colon \mathbb{R}^n \to \mathbb{R} \end{displaymath} for $1 \leq i \leq n$. The [[de Rham differential]] collects all partial derivatives of a function into a single [[differential 1-form]] \begin{defn} \label{DeRhamDifferentialOn1Forms}\hypertarget{DeRhamDifferentialOn1Forms}{} For $n \in \mathbb{N}$, The \textbf{[[de Rham differential]]} on [[smooth functions]] in $C^\infty(\mathbb{R}^n)$ is the [[function]] \begin{displaymath} \mathbf{d} \colon C^\infty(\mathbb{R}^n) \to \Omega^1(\mathbb{R}^n) \end{displaymath} which takes $f \in C^\infty(\mathbb{R}^n)$ to \begin{displaymath} \mathbf{d}f \coloneqq \sum_{i = 1}^n \frac{\partial f}{\partial x^i} \mathbf{d} x^i \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} For $x^i \colon \mathbb{R}^n \to \mathbb{R}$ one of the [[coordinate]] functions, the de Rham differential $\mathbf{d} x^i$ indeed coincides with the basis element of the same name according to def. \ref{Differential1FormsOnCartesianSpaces}, using that \begin{displaymath} \frac{\partial x^i}{\partial x^{j}} = \left\{ \itexarray{ 1 & | i = j \\ 0 & | otherwise } \right. \,. \end{displaymath} \end{example} \begin{prop} \label{}\hypertarget{}{} The de Rham differentials $\mathbf{d} \colon C^\infty(\mathbb{R}^n) \to \Omega^1(\mathbb{R}^n)$ for all $n \in \mathbb{N}$ are compatible with [[pullback of differential forms|pullback of differential 1-forms]], def. \ref{PullbackOfDifferential1FormsOnCartesianSpaces}, in that for each coordinate transformation $\phi \colon \mathbb{R}^{\tilde k} \to \mathbb{R}^{k}$ the [[diagram]] \begin{displaymath} \itexarray{ C^\infty(\mathbb{R}^k) &\stackrel{\mathbf{d}}{\to}& \Omega^1(\mathbb{R}^k) \\ \downarrow^{\mathrlap{\phi^\ast}} && \downarrow^{\mathrlap{\phi^\ast}} \\ C^\infty(\mathbb{R}^{\tilde k}) &\stackrel{\mathbf{d}}{\to}& \Omega^1(\mathbb{R}^{\tilde k}) } \end{displaymath} [[commuting diagram|commutes]]. \end{prop} \begin{proof} This is equivalently the statement of the \emph{[[chain rule]]} of [[differentiation]]: For any $f \in C^\infty(\mathbb{R}^k)$ we have on the one hand, by def. \ref{PullbackOfDifferential1FormsOnCartesianSpaces} and def. \ref{DeRhamDifferentialOn1Forms} \begin{displaymath} \begin{aligned} \mathbf{d} \phi^\ast f & = \mathbf{d} (f \circ \phi) \\ & = \sum_{j = 1}^{\tilde k} \frac{\partial (f \circ \phi)}{\partial x^j}\mathbf{d} x^j \end{aligned} \end{displaymath} and on the other hand, applying the definition in the other order, \begin{displaymath} \begin{aligned} \phi^* \mathbf{d}f & = \phi^* \sum_{i = 1}^k \frac{\partial f}{\partial x^i} \mathbf{d}x^i \\ & = \sum_{i = 1}^k \sum_{j = 1}^{\tilde k} \left(\frac{\partial f}{\partial x^i}\circ \phi \right) \cdot \left(\frac{\partial \phi^i}{\partial x^j}\right) \mathbf{d}x^j \end{aligned} \,. \end{displaymath} Both expressions agree precisely if for all $j$ we have \begin{displaymath} \frac{\partial (f \circ \phi)}{\partial x^j} = \sum_{i = 1}^k \left(\frac{\partial f}{\partial x^i}\circ \phi\right) \cdot \left(\frac{\partial \phi^i}{\partial x^j}\right) \;\;\; \in C^\infty(\mathbb{R}^{\tilde k}) \,. \end{displaymath} This is precisely the statement of the \emph{[[chain rule]]} for [[differentiation]]. \end{proof} Notice that as smooth spaces $\mathbb{R} = \Omega^0 = C^\infty(-)$, by prop. \ref{SpaceOf0FormsIsRealLine}. Therefore the above says that \begin{prop} \label{}\hypertarget{}{} The [[de Rham differential]], def. \ref{DeRhamDifferentialOn1Forms}, constitutes a homomorphism of smooth spaces, def. \ref{HomomorphismOfSmoothSpaces} \begin{displaymath} \mathbf{d} \colon \mathbb{R} \to \Omega^1 \end{displaymath} from the [[real line]] to the universal smooth moduli space of differential 1-forms, def. \ref{SmoothModuliSpaceOfnForms}. \end{prop} \begin{remark} \label{}\hypertarget{}{} Below in \emph{\hyperlink{MaurerCartanFormOnLieGroup}{Maurer-Cartan form on a Lie group}} we discuss a more general abstract origin of $\mathbf{d} \colon \mathbb{R} \to \Omega^1_{cl}$. \end{remark} We now extend the de Rham differential to differential forms of higher degree. \begin{defn} \label{DeRhamDifferentialInGeneralDegreeOverCartesianSpaces}\hypertarget{DeRhamDifferentialInGeneralDegreeOverCartesianSpaces}{} For all $n \in \mathbb{N}$ let \begin{displaymath} \mathbf{d} \colon \Omega^\bullet(\mathbb{R}^n) \to \Omega^\bullet(\mathbb{R}^n) \end{displaymath} be the unique extension of $\mathbf{d} \colon C^\infty(-) \to \Omega^1(-)$ to a degree-1 [[derivation]] with \begin{displaymath} \mathbf{d}\mathbf{d}x^i = 0 \,. \end{displaymath} \end{defn} (\ldots{}) \begin{prop} \label{DeRhamDifferentialAsMorphismOfSmoothSpacesInEachDegree}\hypertarget{DeRhamDifferentialAsMorphismOfSmoothSpacesInEachDegree}{} For each $n \in \mathbb{N}$ the de Rham differential of def. \ref{DeRhamDifferentialInGeneralDegreeOverCartesianSpaces} constitutes a homomorphism of smooth spaces \begin{displaymath} \mathbf{d} \colon \Omega^n \to \Omega^{n+1} \end{displaymath} form the universal smooth moduli space of differental $n$-forms to that of differential $n+1$-forms. \end{prop} \hypertarget{DifferentiationOnSmoothSpaces}{}\paragraph*{{Differentiation on smooth spaces}}\label{DifferentiationOnSmoothSpaces} We now extend the notion of [[derivatives]] and [[de Rham differentials]] from [[smooth functions]] on [[Cartesian spaces]] to smooth functions on general [[smooth spaces]]. Recall from def. \ref{DifferentialnFormOnSmoothSpace} that the set of differential $n$-forms on a [[smooth space]] $X$ is $\Omega^n(X) \coloneqq Hom(X, \Omega^n)$. \begin{defn} \label{DeRhamDifferentialOverSmoothSpaces}\hypertarget{DeRhamDifferentialOverSmoothSpaces}{} For $X \in Smooth0Type$ a smooth space and $n \in \mathbb{N}$, the \textbf{[[de Rham differential]]} on $n$-forms over $X$ is the [[function]] \begin{displaymath} \mathbf{d} \colon \Omega^n(X) \to \Omega^{n+1}(X) \end{displaymath} which is the postcomposition with the homomorphism of smooth spaces of prop. \ref{DeRhamDifferentialAsMorphismOfSmoothSpacesInEachDegree}: \begin{displaymath} Hom(X,\mathbf{d}) \colon Hom(X,\Omega^n) \to Hom(X,\Omega^{n+1}) \,. \end{displaymath} \end{defn} In particular the [[derivative]] of a smooth function $f \colon X \to \mathbb{R}$ is the [[composition|composite]] \begin{displaymath} \mathbf{d}f \colon X \stackrel{f}{\to} \mathbb{R} \stackrel{\mathbf{d}}{\to} \Omega^1_{cl} \hookrightarrow \Omega^1 \,. \end{displaymath} Below in \emph{\hyperlink{VariationIsDifferentiationOnSmoothSpaces}{Variation is differentiation on smooth spaces}} we find that this notion of differentiation of smooth functions on smooth spaces subsumes what traditionally is called \emph{[[variational calculus]]} of [[functionals]] on [[mapping spaces]]. \hypertarget{ElectromagneticFieldStrength}{}\paragraph*{{Example: The electromagnetic field strength}}\label{ElectromagneticFieldStrength} for instance [[electromagnetic potential]] \begin{displaymath} A = \phi \mathbf{d}t + A_1 \mathbf{d}x^1 + A_2 \mathbf{d}x^2 + A_3 \mathbf{d}x^3 \end{displaymath} then the [[electromagnetic field strength]] is \begin{displaymath} F \coloneqq \mathbf{d}A = E_1 \mathbf{d}x^1 \wedge \mathbf{d}t + E_2 \mathbf{d}x^2 \wedge \mathbf{d}t + E_3 \mathbf{d}x^3 \wedge \mathbf{d}t + B_1 \mathbf{d}x^2 \wedge \mathbf{d}x^3 + B_2 \mathbf{d}x^3 \wedge \mathbf{d}x^1 + B_3 \mathbf{d}x^1 \wedge \mathbf{d}x^2 \end{displaymath} with \begin{displaymath} E_i = \frac{\partial \phi}{\partial x^i} - \frac{\partial A_i}{\partial t} \end{displaymath} and \begin{displaymath} B_1 = \frac{\partial A_2}{\partial x^3} - \frac{\partial A_3}{\partial x^2} \end{displaymath} etc This are the first 2 of 4 [[Maxwell equations]]: $\mathbf{d} F = 0$ (the other 2 are discussed below in \hyperlink{RiemannianGeometry}{Riemannian geometry}) for \begin{displaymath} A,A' : X \to \Omega^1(-) \end{displaymath} a [[gauge transformation]] $A \to A'$ is $\lambda : X \to \mathbb{R}$ with \begin{displaymath} A' = A + \mathbf{d} \lambda \end{displaymath} \hypertarget{VariationalCalculus}{}\paragraph*{{Variational calculus}}\label{VariationalCalculus} Traditionally a \emph{[[functional]]} is a [[function]] which is sufficiently like a [[smooth function]], but defined not on a [[manifold]], but on a [[mapping space]] between manifolds. Also traditionally, a \emph{[[variational derivative]]} of such a functional is something aking to a [[derivative]], generalized to this context, and subject to the condition that all variations \emph{preserve some boundary conditions}. We formulate this classical theory in the context of [[smooth spaces]]. Here a [[nonlinear functional|functional]] is simply a homomorphism of smooth spaces out of a smooth [[mapping space]], as in def. \ref{SmoothFunctionSpace}. We may impose \emph{respect for boundary conditions} by forming the [[fiber product]] of this mapping space with a \emph{discrete smooth space inclusion}, given in def. \ref{MapFromDiscretizationOfSmooth0Type} below. Then the \emph{variational derivative} is simply the ordinary derivative of def. \ref{DeRhamDifferentialOverSmoothSpaces}. \hypertarget{discrete_points_of_a_smooth_space}{}\paragraph*{{Discrete points of a smooth space}}\label{discrete_points_of_a_smooth_space} \begin{defn} \label{DiscretizationOfSmooth0Type}\hypertarget{DiscretizationOfSmooth0Type}{} For $X \in Smooth0Type$ a [[smooth space]], write \begin{displaymath} \Gamma X \coloneqq Hom(*,X) \in Set \end{displaymath} for its \emph{set of points}, the set of homomorphisms, def. \ref{HomomorphismOfSmoothSpaces}, from the point to $X$. Write \begin{displaymath} \flat X \coloneqq Disc (\Gamma(X)) \end{displaymath} for the discrete smooth space, def. \ref{DiscreteSmoothSpace}, on this set of points. \end{defn} \begin{defn} \label{MapFromDiscretizationOfSmooth0Type}\hypertarget{MapFromDiscretizationOfSmooth0Type}{} For every smooth space $X$ there is a canonical homomorphism of smooth spaces \begin{displaymath} \flat X \to X \,. \end{displaymath} This sends a plot $U \to \flat X$, which by definition of $Disc(-)$ is a point in $\Gamma X$, hence a homomorphism $x \colon * \to X$, to the plot $U \to * \stackrel{x}{\to} X$ of $X$. \end{defn} \hypertarget{SmoothFunctionals}{}\paragraph*{{Smooth functionals}}\label{SmoothFunctionals} Let $X$ be a [[smooth manifold]]. Let $\Sigma$ be a [[smooth manifold|smooth]] [[manifold with boundary]] $\partial \Sigma \hookrightarrow \Sigma$. Write \begin{displaymath} [\Sigma, X] \in Smooth0Type \end{displaymath} for the [[smooth space]] (a [[diffeological space]]) which is the [[mapping space]] from $\Sigma$ to $X$, hence such that for each $U \in$ [[CartSp]] we have \begin{displaymath} [\Sigma, X](U) = C^\infty(U \times \Sigma, X) \,. \end{displaymath} \begin{defn} \label{MappingSpaceWithNonVaryingBoundary}\hypertarget{MappingSpaceWithNonVaryingBoundary}{} Write \begin{displaymath} [\Sigma, X]_{\partial \Sigma} \coloneqq [\Sigma, X] \times_{[\partial \Sigma,X]} \flat [\partial \Sigma,X] \end{displaymath} for the [[pullback]] in smooth spaces \begin{displaymath} \itexarray{ [\Sigma,X]_{\partial \Sigma} &\to& \flat [\partial \Sigma, X] \\ \downarrow && \downarrow \\ [\Sigma,X] &\stackrel{(-)|_{\partial \Sigma}}{\to}& [\partial \Sigma,X] } \,, \end{displaymath} where \begin{itemize}% \item the bottom morphism is the restriction $[\partial \Sigma \hookrightarrow \Sigma, X]$ of configurations to the boundary; \item the right vertical morphism is the homomorphism from def. \ref{MapFromDiscretizationOfSmooth0Type}. \end{itemize} \end{defn} \begin{prop} \label{PlotsOfMappingSpaceWithNonVaryingBoundary}\hypertarget{PlotsOfMappingSpaceWithNonVaryingBoundary}{} The [[smooth space]] $[\Sigma, X]_{\partial \Sigma}$ is a [[diffeological space]] whose underlying set is $C^\infty(\Sigma,X)$ and whose $U$-plots for $U \in$ [[CartSp]] are smooth functions $\phi \colon U \times \Sigma \to X$ such that $\phi(-,s) \colon U \to X$ is the constant function for all $s \in \partial \Sigma \hookrightarrow \Sigma$. \end{prop} \begin{defn} \label{SmoothFunctional}\hypertarget{SmoothFunctional}{} A \textbf{[[nonlinear functional|functional]]} on the mapping space $[\Sigma, X]$ is a [[homomorphism]] of smooth spaces \begin{displaymath} S \colon [\Sigma, X]_{\partial \Sigma} \to \mathbb{R} \,. \end{displaymath} \end{defn} \hypertarget{FunctionalDerivative}{}\paragraph*{{Functional derivative / variational derivative}}\label{FunctionalDerivative} Write \begin{displaymath} \mathbf{d} \colon \mathbb{R} \to \Omega^1 \end{displaymath} for the [[de Rham differential]] incarnated as a [[homomorphism]] of [[smooth spaces]] from the [[real line]] to the smooth [[moduli space]] of [[differential 1-forms]]. \begin{defn} \label{}\hypertarget{}{} The \textbf{functional derivative} \begin{displaymath} \mathbf{d}S \in \Omega^1([\Sigma,X]_{\partial \Sigma}) \end{displaymath} of a functional $S$, def. \ref{SmoothFunctional}, is simply its [[de Rham differential]] as a homomorphism of smooth spaces, hence the composite \begin{displaymath} \mathbf{d} S \colon [ \Sigma, X]_{\partial \Sigma} \stackrel{S}{\to} \mathbb{R} \stackrel{\mathbf{d}}{\to} \Omega^1 \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} This means that for each smooth parameter space $U \in$ [[CartSp]] and for each smooth $U$-parameterized collection \begin{displaymath} \phi \colon U \times \Sigma \to X \end{displaymath} of smooth functions $\Sigma \to X$, constant in the parameter $U$ in some neighbourhood of the boundary of $\Sigma$, \begin{displaymath} S_\phi \colon [\Sigma,X]_{\partial \Sigma}(U) \to C^\infty(U,\mathbb{R}) \end{displaymath} is the function that sends each such $U$-collection of configurations to the $U$-collection of their values under $S$. Then \begin{displaymath} (\mathbf{d}S)_\phi \in \Omega^1(U) \end{displaymath} is the smooth [[differential 1-form]] \begin{displaymath} (\mathbf{d}S)_\phi = \mathbf{d}(S(\phi)) \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} Let $\Sigma = [0,1] \hookrightarrow \mathbb{R}$ be the standard [[interval]]. Let \begin{displaymath} L(-,-) \mathbf{d}t \in \Omega^1([0,1], C^\infty(\mathbb{R}^2)) \end{displaymath} and consider the functional \begin{displaymath} S \colon ([0,1] \stackrel{\gamma}{\to} X) \mapsto \int_{0}^1 L(\gamma(t), \dot \gamma(t)) d t \,. \end{displaymath} Then for $U = \mathbb{R}$ and any smooth $U$-parameterized collection $\{\gamma_{u} \colon \Sigma \to X\}_{u \in U}$ the functional derivative takes the value \begin{displaymath} \begin{aligned} \mathbf{d}S_{\gamma_{(-)}} & = \left( \frac{d}{d u} \int_0^1 L(\gamma_u(t), \dot \gamma_u(t)) dt \right) \mathbf{d}u \\ & = \int_{0}^1 \left( \frac{\partial L}{\partial \gamma}(\gamma_u(t), \dot \gamma_u(t)) \frac{d \gamma_u(t)}{d u} + \frac{\partial L}{\partial \dot \gamma}(\gamma_u(t), \dot \gamma_u(t)) \frac{\partial \dot \gamma_u(t)}{\partial u} \right) dt \mathbf{d} u \\ & = \int_{0}^1 \left( \frac{\partial L}{\partial \gamma}(\gamma_u(t), \dot \gamma_u(t)) \frac{d \gamma_u(t)}{d u} + \frac{\partial L}{\partial \dot \gamma}(\gamma_u(t), \dot \gamma_u(t)) \frac{\partial }{\partial t}\frac{\partial \gamma_u(t)}{\partial u} \right) dt \mathbf{d} u \\ & = \int_{0}^1 \left( \frac{\partial L}{\partial \gamma}(\gamma_u(t), \dot \gamma_u(t)) - \frac{\partial}{\partial t}\frac{\partial L}{\partial \dot \gamma}(\gamma_u(t), \dot \gamma_u(t)) \right) \frac{\partial \gamma_u(t)}{\partial u} dt \mathbf{d}u \end{aligned} \,. \end{displaymath} Here we used [[integration by parts]] and used that the boundary term vanishes \begin{displaymath} \begin{aligned} \int_{0}^1 \frac{\partial}{\partial t} \left( \frac{\partial}{\partial \dot\gamma} L(\gamma_u(s), \dot \gamma_u(s)) \frac{\partial \gamma_u(s)}{\partial u} \right) d s & = \left( \frac{\partial}{\partial \dot\gamma} L(\gamma_u(1), \dot \gamma_u(1)) \frac{\partial \gamma_u(1)}{\partial u} \right) - \left( \frac{\partial}{\partial \dot\gamma} L(\gamma_u(0), \dot \gamma_u(0)) \frac{\partial \gamma_u(0)}{\partial u} \right) \\ & = 0 \end{aligned} \end{displaymath} since by prop. \ref{PlotsOfMappingSpaceWithNonVaryingBoundary} $\gamma_{(-)}(1)$ and $\gamma_{(-)}(0)$ are constant. \end{example} \hypertarget{EulerLagrangeEquations}{}\paragraph*{{Euler-Lagrange equations}}\label{EulerLagrangeEquations} \begin{itemize}% \item [[critical locus]] \item [[Euler-Lagrange equation]] \item [[equations of motion]] \end{itemize} \hypertarget{DGeometry}{}\paragraph*{{$\mathcal{D}$-geometry}}\label{DGeometry} \begin{itemize}% \item [[D-geometry]] \end{itemize} \hypertarget{infinitesimal_smooth_loci}{}\paragraph*{{Infinitesimal smooth loci}}\label{infinitesimal_smooth_loci} \begin{defn} \label{SmoothL}\hypertarget{SmoothL}{} Write \begin{displaymath} SmoothLoci \coloneqq SmoothAlgebras^{op} \coloneqq Func^\times(CartSp,Set) \end{displaymath} for the category of [[spaces]] which are [[Isbell duality|formally dual]] to [[smooth algebras]]: the [[opposite category]] of that of [[smooth algebras]]. This is called the category of \textbf{[[smooth loci]]}. \end{defn} \begin{defn} \label{InfinitesimalAlgebra}\hypertarget{InfinitesimalAlgebra}{} A \textbf{[[Artin ring|smooth Artin algebra]]} (also called a ``Weil algebra'' in the [[synthetic differential geometry]]-literature) is a [[smooth algebra]] $A$ whose underlying $\mathbb{R}$-[[vector space]] is a [[direct sum]] of the form \begin{displaymath} A = \mathbb{R} \oplus V \,, \end{displaymath} where $V$ is of finite [[dimension]] and such that every element $v \in V \subset A$ is nilpotent, in that there is $n \in \mathbb{N}$ such that the $n$-fold product of $v$ with itself in $A$ vanishes: $v^n = 0$. \end{defn} \begin{example} \label{}\hypertarget{}{} The smallest smooth Artin algebra is the [[ring of dual numbers]], def. \ref{DualNumbers}, for which $V = \mathbb{R}$. \end{example} \begin{defn} \label{InfinitesimallyThickenedPoints}\hypertarget{InfinitesimallyThickenedPoints}{} Write \begin{displaymath} InfPoint \hookrightarrow SmoothLoci \end{displaymath} for the [[full subcategory]] of $SmoothLoci$, def. \ref{SmoothL}, of those that are duals of Artin algebras, def. \ref{InfinitesimalAlgebra}. We call this the category of \textbf{[[infinitesimally thickened points]]}. \end{defn} \hypertarget{de_rham_space}{}\paragraph*{{de Rham space}}\label{de_rham_space} \begin{itemize}% \item [[de Rham space]] \end{itemize} \hypertarget{jet_bundles}{}\paragraph*{{Jet bundles}}\label{jet_bundles} \begin{itemize}% \item [[jet bundle]] \end{itemize} \hypertarget{DifferentiationLayerSem}{}\subsubsection*{{Semantic Layer}}\label{DifferentiationLayerSem} \hypertarget{synthetic_differential_geometry}{}\paragraph*{{Synthetic differential geometry}}\label{synthetic_differential_geometry} \begin{itemize}% \item [[synthetic differential geometry]] \end{itemize} We have two [[full and faithful functors]] \begin{displaymath} CartSp \hookrightarrow SmoothLoci \end{displaymath} \begin{displaymath} InfPoint \hookrightarrow SmoothLoci \,. \end{displaymath} \begin{defn} \label{InfinitesimallyThickenedCartesianSpaces}\hypertarget{InfinitesimallyThickenedCartesianSpaces}{} Write [[CartSp]]${}_{th} \hookrightarrow SmoothLocus$ for the [[full subcategory]] of that of [[smooth loci]], def. \ref{SmoothL}, on those of the form \begin{displaymath} \mathbf{U} = U \times D \end{displaymath} with $U \in CartSp \hookrightarrow SmoothLoci$ and $D \in InfPoint \hookrightarrow SmoothLoci$. We may call this the category of \textbf{infinitesimally thickened Cartesian spaces} or or \textbf{[[formal smooth manifold|formal smooth Cartesian spaces]]}. \end{defn} The category $CartSp_{th}$ carries several [[coverages]] of interest. One is this: \begin{defn} \label{CahiersTopos}\hypertarget{CahiersTopos}{} For $\mathbf{U} = U \times D \in CartSp_{th}$ say that a [[covering family]] is a set of morphisms in $CartSp_{th}$ of the form $\{ U_i \times D \stackrel{(\phi_i, id_D)}{\to} U \times D\}_i$ such that $\{ U_i \stackrel{\phi_i}{\to} U\}_i$ is a [[covering]] family in [[CartSp]]. The corresponding [[sheaf topos]] $Sh(CartSp_{th})$ is known as the \textbf{[[Cahiers topos]]}. \end{defn} \begin{prop} \label{}\hypertarget{}{} The [[Cahiers topos]] $Sh(CartSp_{th})$, def. \ref{CahiersTopos},\newline is a [[cohesive topos]]. \end{prop} \begin{defn} \label{}\hypertarget{}{} We write \begin{displaymath} SynthDiff0Type \coloneqq Sh(CartSp_{th}) \,. \end{displaymath} \end{defn} \begin{itemize}% \item [[synthetic differential infinity-groupoid]] \end{itemize} \hypertarget{tangent_bundle}{}\paragraph*{{Tangent bundle}}\label{tangent_bundle} Write $D \in Sh(CartSp_{th})$ for the [[smooth locus]] formally dual to the [[ring of dual numbers]], def. \ref{}. Write \begin{displaymath} i \colon * \to D \end{displaymath} for the unique point inclusion. \begin{defn} \label{}\hypertarget{}{} For $X \in SynthDiff0Type$, the [[internal hom]] \begin{displaymath} T X \coloneqq [D,X] \in SynthDiff0Type \end{displaymath} equipped with the morphism \begin{displaymath} [i,X] \colon [D,X] \to [*,X] \simeq X \end{displaymath} is the \textbf{[[tangent bundle]]} of $X$. \end{defn} \begin{defn} \label{}\hypertarget{}{} For $X \in SynthDiff0Type$, a \textbf{[[vector field]]} $v$ on $X$ is a [[section]] \begin{displaymath} \itexarray{ X &&\stackrel{v}{\to}&& T X \\ & {}_{\mathllap{id}}\searrow && \swarrow_{\mathrlap{[i,D]}} \\ && X } \,. \end{displaymath} The \textbf{smooth space of vector fields} is the [[internal hom]] in the [[slice topos]] over $X$ \begin{displaymath} \mathbf{\Gamma}_X(T X ) \coloneqq [X,T X]_X \,. \end{displaymath} \end{defn} \hypertarget{differential_equations}{}\paragraph*{{Differential equations}}\label{differential_equations} \begin{itemize}% \item [[equation]] \item [[differential equation]] \end{itemize} \hypertarget{DifferentialCohesionOfToposOfSmoothSpaces}{}\paragraph*{{Differential cohesion of the topos of smooth spaces}}\label{DifferentialCohesionOfToposOfSmoothSpaces} Recall the sites \begin{itemize}% \item [[CartSp]], def. \ref{TheDifferentiallyGoodOpenCoverCoverage}; \item [[infinitesimally thickened point|InfPoint]], def. \ref{InfinitesimallyThickenedPoints}; \item [[formal smooth manifold|CartSp]]${}_{th}$, def. \ref{InfinitesimallyThickenedCartesianSpaces}. \end{itemize} \begin{defn} \label{TheMorphismsOfSitesForCartSpInfinitesimalNeighbourhood}\hypertarget{TheMorphismsOfSitesForCartSpInfinitesimalNeighbourhood}{} Define [[functors]] \begin{displaymath} CartSp \stackrel{\overset{i}{\hookrightarrow}}{\underset{p}{\leftarrow}} CartSp_{th} \stackrel{\iota}{\leftarrow} InfPoint \end{displaymath} by \begin{itemize}% \item $i \colon U \mapsto U \times *$; \item $p \colon U \times D \mapsto U$ \item $\iota \colon D \mapsto * \times D$ \end{itemize} \end{defn} \begin{prop} \label{DifferentialCohesiveStructureOfSmoothSpaces}\hypertarget{DifferentialCohesiveStructureOfSmoothSpaces}{} All three functors in def. \ref{TheMorphismsOfSitesForCartSpInfinitesimalNeighbourhood} are [[morphisms of sites]]. The induced [[geometric morphism]] of [[sheaf toposes]] is of the form \begin{displaymath} Sh(CartSp) \stackrel{}{\stackrel{\overset{Lan_i}{\hookrightarrow}}{\stackrel{\overset{(-)\circ i}{\leftarrow}}{\stackrel{\overset{(-)\circ p}{\hookrightarrow}}{\underset{Ran_p}{\leftarrow}}}}} Sh(CartSp_{th}) \stackrel{\overset{Lan_\iota}{\leftarrow}}{\underset{(-)\circ \iota}{\to}} Sh(InfPoint) \end{displaymath} where hence the morphism on the left is in particular an [[essential geometric morphism|essential]] [[geometric embedding]]. \end{prop} \begin{prop} \label{}\hypertarget{}{} The sequence of [[geometric morphisms]] \begin{displaymath} Sh(CartSp) \stackrel{p^*}{\to} Sh(CartSp_{th}) \stackrel{\iota^*}{\to} Sh(InfPoint) \end{displaymath} exhibit a [[homotopy cofiber sequence]] in the [[(2,1)-category]] [[Topos]]. \end{prop} \begin{proof} By the discussion at \emph{\href{%28infinity%2C1%29Topos#ExistenceOfLimitsAndColimits}{(∞,1)Topos -- Existence of limits and colimits}} the statement is equivalently that the [[inverse image]] functors \begin{displaymath} Sh(CartSp) \stackrel{Lan_p}{\leftarrow} Sh(CartSp_{th}) \stackrel{Lan_\iota}{\leftarrow} Sh(InfPoint) \end{displaymath} form a [[homotopy fiber sequence]] in [[(∞,1)Cat]]. Computing this in the [[model structure for quasi-categories]] after passing to [[nerves]], the morphism $N(Lan_p)$ is clearly an [[inner Kan fibration]] because of the [[subcategory]] inclusion $Sh(CartSp) \hookrightarrow Sh(CartSp_{th})$. So by the general discussion at [[homotopy pullback]] the homotopy fiber is given by the 1-categorical fiber of $N(Lan_p)$ in [[sSet]]. By the discussion at \emph{\href{http://ncatlab.org/nlab/show/Kan+extension#LeftKanOnRepresentables}{Left Kan extension - on representables}} $Lan_p$ acts as $p$ on [[representable functor|representables]]. The 1-categorical fiber of $N(p) \colon N(CartSp_{th}) \to N(CartSp)$ is evidently $N(InfPoint)$. Since $Lan_\iota$ is a [[left adjoint]] it preserves colimits and since ever sheaf is a colimit of representables, this is sufficient to imply the claim. \end{proof} \hypertarget{DifferentialCohesion}{}\paragraph*{{Differential cohesion}}\label{DifferentialCohesion} We axiomatize the existence of infinitesimals by further [[modal logic|modalities]] on a [[cohesive topos]]. \begin{defn} \label{DifferentialCohesiveTopos}\hypertarget{DifferentialCohesiveTopos}{} Given a [[cohesive topos]] $\mathbf{H} = Cohesive0Type$ over a [[base topos]] [[Disc∞Grpd|Discrete0Type]], a structure of \textbf{[[differential cohesion]]} on $\mathbf{H}$ is an [[geometric embedding]] into a [[cohesive topos]] $\mathbf{H}_{th} = InfThickenedCohesive0Type$ with an extra [[left eadjoint]] that preserves the terminal object: \begin{displaymath} \itexarray{ Cohesive0Type &&\stackrel{\overset{i_!}{\hookrightarrow}}{\stackrel{\overset{i^*}{\leftarrow}}{\underset{i_*}{\hookrightarrow}}}&& InfThickenedCohesive0Type \\ & {}_{\mathllap{\Gamma}}\searrow \nwarrow^{\mathrlap{Disc}} && {}^{\mathllap{\Gamma_{th}}}\swarrow \nearrow_{\mathrlap{Disc_{th}}} \\ && Discrete0Type } \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} Given [[differential cohesion]], def. \ref{DifferentialCohesiveTopos}, define the [[monad]]/[[comonad]] [[adjunction]] \begin{displaymath} (Red \dashv \Pi_{inf}) \colon \mathbf{H}_{th} \stackrel{\overset{i_*}{\leftarrow}}{\underset{i^*}{\to}} \mathbf{H} \stackrel{\overset{i_!}{\leftarrow}}{\underset{i_*}{\to}} \mathbf{H} \,. \end{displaymath} We call $Red(X)$ the \textbf{[[reduced type]]} of $X$ and $\Pi_{inf}(X)$ the [[infinitesimal path ∞-groupoid]] of $X$. For the $(i_* \dashv i^*)$-[[unit of an adjunction|unit]] we write \begin{displaymath} InfinitesimalPathInclusion_X \colon X \to \Pi_{inf}(X) \end{displaymath} and call it the \textbf{constant infinitesimal path inclusion} on $X$. The $(i_* \dashv i^*)$-[[unit of an adjunction|counit]] \begin{displaymath} Red X \to X \end{displaymath} we call the \textbf{inclusion of the reduced part} of $X$. \end{defn} \begin{defn} \label{}\hypertarget{}{} Given a [[geometric embedding]] of [[(∞,1)-topos|∞-toposes]] \begin{displaymath} CohesiveType \stackrel{i}{\hookrightarrow} InfThickenedCohesiveType \end{displaymath} exhibiting [[differential cohesion]], write \begin{displaymath} CohesiveType \stackrel{i}{\hookrightarrow} InfThickenedCohesiveType \to InfinitesimalType \end{displaymath} for the corresponding [[homotopy cofiber sequence]] in [[(∞,1)-topos]]. The [[full sub-(∞,1)-category]] that is the [[kernel]] of the [[global section geometric morphism]] of $InfininitesimalType$ we call the [[(∞,1)-category]] of \textbf{synthetic [[∞-Lie algebras]]} \begin{displaymath} L_\infty Algebra \coloneqq ker(\Gamma) \hookrightarrow InfinitesimalType \stackrerl{\Gamma}{\to} DiscreteType \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} For the moment see at \emph{\href{synthetic%20differential%20infinity-groupoid#LieDifferentiation}{Synthetic differential infinity-groupoid -- Lie differentiation}}. \end{example} \begin{prop} \label{}\hypertarget{}{} Setting \begin{itemize}% \item $\mathbf{H}_{th} \coloneqq Sh(CartSp_{th})$ \item $\mathbf{H} \coloneqq Sh(CartSp)$ \item $\mathbf{H}_{inf} \coloneqq Sh(InfPoint)$ \end{itemize} makes prop. \ref{DifferentialCohesiveStructureOfSmoothSpaces} exhibit [[differential cohesion|differential cohesive structure]]. \end{prop} \hypertarget{DifferentiationSemLayerDeRhamSpace}{}\paragraph*{{de Rham space}}\label{DifferentiationSemLayerDeRhamSpace} \begin{defn} \label{}\hypertarget{}{} For $X \in \mathbf{H}_{th}$ we call $\Pi_{inf}(X) \in \mathbf{H}$ the \textbf{[[de Rham space]] object} of $X$. \end{defn} \hypertarget{DifferentiationSemLayerJetBundle}{}\paragraph*{{Jet bundle}}\label{DifferentiationSemLayerJetBundle} \begin{defn} \label{}\hypertarget{}{} For $X \in \mathbf{H}$ \begin{displaymath} Jet_X \coloneqq (InfinitesimalPathInclusion_X)_* \colon \mathbf{H}_{th}/X \to \mathbf{H}_{th}/\Pi_{inf}(X) \,. \end{displaymath} \end{defn} For $(E \to X) \in \mathbf{H}_{th}/X$, $Jet_X(E)$ is the \textbf{[[jet bundle]]} of $E$. \hypertarget{formally_tale__formally_unramified__formally_smooth}{}\paragraph*{{Formally \'e{}tale / formally unramified / formally smooth}}\label{formally_tale__formally_unramified__formally_smooth} \begin{defn} \label{FormallyEtaleMap}\hypertarget{FormallyEtaleMap}{} A morphism $f \;\colon\; X \to Y$ in $\mathbf{H}$ is called a \textbf{[[formally étale morphism]]} if the naturality square of the $\mathbf{\Pi}_{inf}$-[[unit of a monad|unit]] \begin{displaymath} \itexarray{ X &\stackrel{}{\to}& \mathbf{\Pi}_{inf}(X) \\ \downarrow^{\mathrlap{f}} && \downarrow^{\mathrlap{\mathbf{\Pi}_{inf}(f)}} \\ Y &\to& \mathbf{\Pi}_{inf}(Y) } \end{displaymath} is an [[(∞,1)-pullback]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} If $X, Y \in$ [[SmoothMfd]] $\hookrightarrow$ $\mathbf{H} \stackrel{i_!}{\to} \mathbf{H}_{th}$ then for $f \colon X \to Y$ any morphism \begin{enumerate}% \item $f$ is [[formally étale morphism]] precisely if $f$ is a [[submersion]] of smooth manifolds; \item $f$ is a [[formally unramified morphism]] precisely if it is an [[immersion]] of smooth manifolds; \item $f$ is a [[formally smooth morphism]] precisely if it is a [[diffeomorphism]]. \end{enumerate} \end{prop} \hypertarget{syntactic_layer}{}\subsubsection*{{Syntactic Layer}}\label{syntactic_layer} \hypertarget{differential_homotopy_type_theory}{}\paragraph*{{Differential homotopy type theory}}\label{differential_homotopy_type_theory} \begin{itemize}% \item [[differential homotopy type theory]] \end{itemize} (\ldots{}) \end{document}