\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- integration} \begin{quote}% this page is going to contain one chapter of \emph{[[geometry of physics]]} previous chapters: \emph{[[geometry of physics -- differential forms|differential forms]]}, \emph{[[geometry of physics -- smooth homotopy types]]} \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{integration}{Integration}\dotfill \pageref*{integration} \linebreak \noindent\hyperlink{IntegrationModelLayer}{Model Layer}\dotfill \pageref*{IntegrationModelLayer} \linebreak \noindent\hyperlink{integration_2}{Integration}\dotfill \pageref*{integration_2} \linebreak \noindent\hyperlink{integration_over_a_coordinate_patch}{Integration over a coordinate patch}\dotfill \pageref*{integration_over_a_coordinate_patch} \linebreak \noindent\hyperlink{IntegrationOfDifferentialFormsOverASmoothManifold}{Integration of differential forms over a manifold}\dotfill \pageref*{IntegrationOfDifferentialFormsOverASmoothManifold} \linebreak \noindent\hyperlink{integration_in_ordinary_differential_cohomology}{Integration in ordinary differential cohomology}\dotfill \pageref*{integration_in_ordinary_differential_cohomology} \linebreak \noindent\hyperlink{holonomy}{Holonomy}\dotfill \pageref*{holonomy} \linebreak \noindent\hyperlink{parallel_transport}{Parallel transport}\dotfill \pageref*{parallel_transport} \linebreak \noindent\hyperlink{holonomy_of_a_flat_principal_connection}{Holonomy of a flat principal connection}\dotfill \pageref*{holonomy_of_a_flat_principal_connection} \linebreak \noindent\hyperlink{Transgression}{Transgression}\dotfill \pageref*{Transgression} \linebreak \noindent\hyperlink{TransgressionOfDifferentialForms}{Transgression of differential forms}\dotfill \pageref*{TransgressionOfDifferentialForms} \linebreak \noindent\hyperlink{defintion}{Defintion}\dotfill \pageref*{defintion} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{GaugeCouplingActionFunctionalOfChargedParticle}{Gauge coupling action functional of charged particle}\dotfill \pageref*{GaugeCouplingActionFunctionalOfChargedParticle} \linebreak \noindent\hyperlink{TransgressionOfKillingFormToSymplecticFormOfChernSimons}{Transgression of Killing form to symplectic form of Chern-Simons theory}\dotfill \pageref*{TransgressionOfKillingFormToSymplecticFormOfChernSimons} \linebreak \noindent\hyperlink{transgression_of_circle_bundles_with_connection}{Transgression of circle $n$-bundles with connection}\dotfill \pageref*{transgression_of_circle_bundles_with_connection} \linebreak \noindent\hyperlink{action_functionals_from_transgression}{Action functionals from transgression}\dotfill \pageref*{action_functionals_from_transgression} \linebreak \noindent\hyperlink{LieIntegration}{Lie integration}\dotfill \pageref*{LieIntegration} \linebreak \noindent\hyperlink{IntegrationSemanticLayer}{Semantic Layer}\dotfill \pageref*{IntegrationSemanticLayer} \linebreak \noindent\hyperlink{integration_and_higher_holonomy}{Integration and higher holonomy}\dotfill \pageref*{integration_and_higher_holonomy} \linebreak \noindent\hyperlink{transgression_2}{Transgression}\dotfill \pageref*{transgression_2} \linebreak \noindent\hyperlink{SemLayerActionFunctionalsFromLagrangeans}{Action functionals from Lagrangeans}\dotfill \pageref*{SemLayerActionFunctionalsFromLagrangeans} \linebreak \noindent\hyperlink{syntactic_layer}{Syntactic Layer}\dotfill \pageref*{syntactic_layer} \linebreak \hypertarget{integration}{}\subsection*{{Integration}}\label{integration} By the discussion in \emph{\hyperlink{DifferentialForms}{Differential forms}} and \emph{\hyperlink{PrincipalConnections}{Principal connections}}, [[differential forms]] and more generally [[connection on a bundle|connections]] may be regarded as [[infinitesimal space|infinitesimal]] [[measures]] of \emph{change}, of \emph{displacement}. The discussion in \emph{\hyperlink{Differentiation}{Differentiation}} showed how to extract from a \emph{finite} but [[cohesion|cohesive]] (e.g. smoothly continuous) displacement all its infinitesimal measures of displacements by [[differentiation]]. Here we discuss the reverse operation: \emph{[[integration]]} is a construction from a [[differential form]] of the corresponding finite cohesive displacement. More generally this applies to any [[connection on a bundle|connection]] and is then called the \emph{[[nLab:parallel transport]]} of the connection, a term again referring to the idea that a finite displacement proceeds pointwise in parallel to a given infinitesimal displacement. Under good conditions this construction can proceed literally by ``adding up all the infinitesimal contributions'' and therefore [[integration]] is traditionally thought of as a generalization of forming [[sums]]. Therefore one has the notation ``$\int_{\Sigma} \omega$'' for the [[integral]] of a [[differential form]] $\omega$ over a space $\Sigma$, as a variant of the notation ``$\sum_{S} f$'' for the [[sum]] of values of a [[function]] on a [[set]] $S$. For the case of integrals of connections the corresponding parallel transport expression is often denoted by an exponentiated integral sign ``$\mathcal{P} \exp(\int_\Sigma \omega)$'', referring to the fact that the passage from infinitesimal to finite quantities involves also the passage from [[Lie algebra]] data to [[Lie group]] data (``[[Lie integration|exponentiated Lie algebra data]]''). However, both from the point of view of [[gauge theory]] [[physics]] as well as from the [[general abstract]] perspective of [[cohesive homotopy type theory]] another characterization of integration is more fundamental: the [[integral]] $\int_\Sigma \omega$ of a [[differential form]] $\omega$ (or more generally of a [[circle n-bundle with connection|connection]]) is an [[invariant]] under those [[gauge transformations]] of $\omega$ that are trivial on the [[boundary]] of $\Sigma$, and it is the \emph{[[universal construction|universal]]} such invariant, hence is uniquely characterized by this property. In traditional accounts this fact is referred to via the \emph{[[Stokes theorem]]} and its generalizations (such as the [[nonabelian Stokes theorem]]), which says that the [[integral]]/[[parallel transport]] is indeed \emph{[[invariant]]} under gauge transformations of differential forms/connections. That this invariance actually characterizes the integral and the parallel transport is rarely highlighted in traditional texts, but it is implicit for instance in the old ``path method'' of [[Lie integration]] (discussed below in \emph{\hyperlink{LieIntegration}{Lie integration}}) as well as in the famous characterization of [[flat connections]], discussed above in \emph{\hyperlink{Flat1Connections}{Flat 1-connections}}: for $X$ a [[connected topological space|connected]] [[manifold]] and for $G$ a [[Lie group]], the operation of sending a [[flat connection|flat]] $G$-[[principal connection]] $\nabla$ to its [[parallel transport]] $\gamma \mapsto hol_{\gamma}(\nabla)$ around [[loops]] $\gamma\colon S^1 \to X$, hence to the [[integral]] of the connection around all possible loops (its [[holonomy]]), for any fixed basepoint \begin{displaymath} hol \coloneqq \mathcal{P} \exp(\int_{(-)} (-)) \;\colon\; H^1_{conn, flat}(X,G) \stackrel{\simeq}{\to} Hom_{Grp}(\pi_1(X) , G)/G \end{displaymath} exhibits a [[bijection]] between gauge [[equivalence classes]] of connections and [[group]] homomorphisms from the [[fundamental group]] $\pi_1(X)$ of $X$ to the [[gauge group]] $G$ (modulo [[adjoint action|adjoint]] $G$-action from gauge transformations at the base point, hence at the integration boundary). This is traditionally regarded as a property of the definition of the [[parallel transport]] $\mathcal{P} \exp(\int_{(-)}(-))$ by [[integration]]. But being a [[bijection]], we may read this fact the other way round: it says that forming equivalence classes of flat $G$-connections is a way of computing their [[integral]]/[[parallel transport]]. We saw a generalization of this fact to non-closed forms and non-flat connections already in the discussion at \emph{\hyperlink{#1FormsAsSmoothFunctors}{Differential 1-forms as smooth incremental path measures}}, where gauge equivalence classes of differential forms are shown to be equivalently assignments of [[parallel transport]] to [[path groupoid|smooth paths]]. This is also implied by the above discussion: for $\nabla \in H^1_{conn}(X,G)$ any non-flat connection and $\gamma \colon S^1 \to X$ a trajectory in $X$, we may form the [[pullback of differential forms|pullback]] of $\nabla$ to $S^1$. There it becomes a necessarily flat connection $\gamma^* \nabla \in H^1_{conn, flat}(S^1,G)$, since the [[curvature]] [[differential 2-form]] necessarily vanishes on the 1-[[dimension|dimensional]] [[manifold]] $S^1$. Accordingly, by the above bijection, forming the gauge [[equivalence class]] of $\gamma^* \nabla$ means to find a group homomorphism \begin{displaymath} \mathbb{Z} \simeq \pi_1(S^1) \to G \end{displaymath} modulo conjugation (modulo nothing if $G$ is [[abelian group|abelian]], such as $G = U(1)$) and since $\mathbb{Z}$ is the [[free group]] on a single generator this is the same as finding an element \begin{displaymath} hol_\gamma(\nabla) = \mathcal{P} \exp(\int_\gamma \gamma^*\nabla) \in G \,. \end{displaymath} This total operation of first pulling back the connection and then forming its [[integration]] (by taking gauge equivalence classes) is called the \emph{[[transgression]]} of the original 1-form connection on $X$ to a 0-form connection on the [[loop space]] $[S^1,X]$. Below in the \hyperlink{IntegrationModelLayer}{Model Layer} we discuss the classical examples of [[integration]]/[[parallel transport]] and their various generalizations in detail. Then in the \hyperlink{IntegrationSemanticLayer}{Semantic Layer} we show how indeed all these constructions are obtained forming [[equivalence classes]] in the [[(∞,1)-topos]] of [[smooth ∞-groupoids|smooth homotopy types]], hence by \emph{[[truncated object in an (∞,1)-category|truncation]]} (followed, to obtain the correct cohesive structure, by \emph{concretification}, def. \ref{ConcreteObjectsAndConcretification}). \hypertarget{IntegrationModelLayer}{}\subsubsection*{{Model Layer}}\label{IntegrationModelLayer} \hypertarget{integration_2}{}\paragraph*{{Integration}}\label{integration_2} \hypertarget{integration_over_a_coordinate_patch}{}\paragraph*{{Integration over a coordinate patch}}\label{integration_over_a_coordinate_patch} For $n \in \mathbb{N}$ let \begin{displaymath} C^n \coloneqq \{ \vec x \in \mathbb{R}^n | \forall_i (0 \leq x_i \leq 1) \} \hookrightarrow \mathbb{R}^n \end{displaymath} be the standard unit [[cube]]. Let \begin{displaymath} \omega \in \Omega^n(\mathbb{R}^n) \end{displaymath} be a [[differential n-form]]. \begin{displaymath} \omega = f \mathbf{d} x^1 \wedge \mathbf{d} x^2 \wedge \cdots \wedge \mathbf{d} x^n \,. \end{displaymath} Let $Partitions(C^k)$ be the [[poset]] whose elements are partitions of the unit $n$cube $C^n$ into $N^n$ subcubes, for $N \in \mathbb{N}$, ordered by inclusion. Let \begin{displaymath} \sum_{(-)} \omega \colon Partitions(C^k) \to \mathbb{R} \end{displaymath} be the function that sends \begin{displaymath} \frac{1}{N^n} \sum_{x^1 = 0}^N \sum_{x^2 = 0}^N \cdots \sum_{k^n = 0}^N f( x^1, \cdots, x^n ) \,. \end{displaymath} Then \begin{displaymath} \int_{C^k} \omega \colon \lim_{N} \sum_N \omega \,. \end{displaymath} \hypertarget{IntegrationOfDifferentialFormsOverASmoothManifold}{}\paragraph*{{Integration of differential forms over a manifold}}\label{IntegrationOfDifferentialFormsOverASmoothManifold} Let $\Sigma$ be a [[closed manifold|closed]] [[orientation|oriented]] [[smooth manifold]] of [[dimension]] $k$ \begin{defn} \label{IntegrationOfDifferentialFormsInTermsOfSmoothModuli}\hypertarget{IntegrationOfDifferentialFormsInTermsOfSmoothModuli}{} For $n \in \mathbb{N}$, $n \geq k$, define the morphism of [[smooth spaces]] \begin{displaymath} \int_{\Sigma} \colon [\Sigma, \Omega^n] \to \Omega^{n-k} \end{displaymath} by declaring that over a [[coordinate chart]] $U \in$ [[CartSp]] it is the ordinary [[integration of differential forms]] over smooth manifolds \begin{displaymath} \int_{\Sigma, U} : \Omega^n(\Sigma\times U) \to \Omega^{n-k}(U) \,. \end{displaymath} \end{defn} \hypertarget{integration_in_ordinary_differential_cohomology}{}\paragraph*{{Integration in ordinary differential cohomology}}\label{integration_in_ordinary_differential_cohomology} \begin{itemize}% \item [[fiber integration in ordinary differential cohomology]] \end{itemize} \hypertarget{holonomy}{}\paragraph*{{Holonomy}}\label{holonomy} \hypertarget{parallel_transport}{}\paragraph*{{Parallel transport}}\label{parallel_transport} given $A \in \Omega^1(\Delta^1, \mathfrak{g})$ we say $f \in C^\infty(\Delta^1, G)$ is the [[parallel transport]] of $A$ if \begin{enumerate}% \item $f(0) = 1$ \item $f$ satisfies the [[differential equation]] \begin{displaymath} \mathbf{d}f = A f \end{displaymath} \end{enumerate} where on the right we have the differential of the left action of the group on itself. In this case one writes \begin{displaymath} \mathcal{P} \exp\left(\int_{\Delta^1} A \right) \coloneqq f(1) \end{displaymath} and calls it the \emph{[[path ordered integral]]} of $A$. Here the enire left hand side is primitive notation. In the case that $G = U(1)$ this reproduces the ordinary [[integral]] \begin{displaymath} \left(G = \mathbb{R}\right) \Rightarrow \mathcal{P} \exp(\int_{\Delta^1} A) = \exp(i \int_{\Delta^1} A) \in U(1) \end{displaymath} There is another way to express this [[parallel transport]], related to [[Lie integration]]: Define an [[equivalence relation]] on $\Omega^1(\Delta^1, \mathfrak{g})$ as follows: two 1-forms $A,A'$ are taken to be equivalent if there is a flat 1-form $\hat A \in \Omega^1_{flat}(D^2, \mathfrak{g})$ on the 2-[[disk]] such that its restriction to the upper semicircle is $A$ and the restriction to the lower semicircle is $\tilde A$. If $G$ is [[simply connected topological space|simply connected]], then the [[equivalence classes]] of this relation form \begin{displaymath} \Omega^1(\Delta^1,\mathfrak{g})_{/\sim} \simeq G \end{displaymath} and the [[quotient]] map coincides with the [[parallel transport]] \begin{displaymath} \mathcal{P} \exp\left(\int_{\Delta^1} \left(-\right)\right) \colon \Omega^1(\Delta^1, \mathfrak{g}) \to \Omega^1(\Delta^1, \mathfrak{g})_{/\sim} \simeq G \end{displaymath} Finally yet another perspective is this: consider the [[equivalence relation]] on $\Omega^1(\Delta^1, \mathfrak{g})$ where two 1-forms are regarded as equivalent if there is a [[gauge transformation]] $\lambda \in C^\infty(\Delta^1, G)$ with $\lambda(0) = e$ and $\lambda(1) = e$, then again \begin{displaymath} \mathcal{P} \exp\left(\int_{\Delta^1} \left(-\right)\right) \colon \Omega^1(\Delta^1, \mathfrak{g}) \to \Omega^1(\Delta^1, \mathfrak{g})_{/\sim} \simeq G \end{displaymath} is the parallel transport \hypertarget{holonomy_of_a_flat_principal_connection}{}\paragraph*{{Holonomy of a flat principal connection}}\label{holonomy_of_a_flat_principal_connection} if $X$ is connected then forming the [[holonomy]] of flat $G$-connections \begin{displaymath} hol \colon G Bund_{\nabla, flat}(X) \stackrel{\simeq}{\to} Hom_{Grp}(\pi_1(X), G) \end{displaymath} is an [[equivalence]], $\pi_1(X)$ the [[fundamental group]]. If $X$ is not connected then \begin{displaymath} hol \colon G Bund_{\nabla, flat}(X) \stackrel{\simeq}{\to} Hom_{Grpd}(\Pi_1(X), \mathbf{B}G) \end{displaymath} is an equivalence. \hypertarget{Transgression}{}\paragraph*{{Transgression}}\label{Transgression} Given a [[differential form]] $\omega$ of degree $n$ on some [[smooth space]] $X$ and given a [[closed manifold|closed]] [[smooth manifold]] $\Sigma$ of [[dimension]] $k \leq n$, then there is canonically induced a differential form $\tau_\Sigma \omega$ of degree $n-k$ on the [[mapping space]] $[\Sigma,X]$: its restriction to any smooth family $\Phi_{(-)}$ of smooth functions $\Phi_u \colon \Sigma \to X$ is the result of first forming the [[pullback of differential forms]] of $\omega$ along $\Phi_{(-)}$ and then forming the [[integration of differential forms]] of the result over $\Sigma$: \begin{displaymath} \tau_{\Sigma} \omega\vert_{\Phi} \coloneqq \int_\Sigma \Phi_{(-)}^\ast \omega \,. \end{displaymath} This differential form $\tau_\Sigma \omega$ on the mapping space is called the \emph{[[transgression of differential forms|transgression]]} of $\omega$ with respect to $\Sigma$ This construction has a variety of immediate generalizations, for instance $\Sigma$ may have [[manifold with boundary|boundary]] and [[manifold with corners|corners]] and the [[mapping space]] may be generalized to a [[space of sections]] of a given [[fiber bundle]]. Also it is immediate to generalize the construction from [[smooth sets]] to [[super formal smooth sets]]. Finally, the construction also generalizes to coefficients richer than differential forms, such as [[cocycles]] in [[differential cohomology]], but this is no longer the topic of the present entry. Important examples of [[transgression of differential forms]] appear in [[Lagrangian field theory]] (in the sense of [[physics]]) defined by a [[Lagrangian density|Lagrangian form]] on the [[jet bundle]] of a [[field bundle]]. Here the transgression of the Lagrangian itself is the corresponding \emph{[[action functional]]}, the transgression of its [[Euler-Lagrange operator|Euler-Lagrange variational derivative]] is the 1-form whose vanishing is the \emph{[[equations of motion]]} and the transgression of the induced [[pre-symplectic current]] is the \emph{[[pre-symplectic form]] on the [[covariant phase space]]} of the field theory. \hypertarget{TransgressionOfDifferentialForms}{}\paragraph*{{Transgression of differential forms}}\label{TransgressionOfDifferentialForms} \hypertarget{defintion}{}\paragraph*{{Defintion}}\label{defintion} There are two definitions of [[transgression of differential forms]]: A traditional formulation is def. \ref{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap} below, which transgresses by [[pullback of differential forms]] along the [[evaluation map]], followed by [[integration of differential forms]]. Another definition is useful, which makes more use of the existence of smooth classifying spaces for differential forms in [[smooth sets]], this we consider as def. \ref{ParameterizedIntegrationOfDifferentialForms} below. That these two definitions are indeed equivalent is the content of prop. \ref{EquivalenceOfTransgressionOfDifferentialFormsToMappingSpaces} below \begin{defn} \label{ParameterizedIntegrationOfDifferentialForms}\hypertarget{ParameterizedIntegrationOfDifferentialForms}{} \textbf{(parameterized [[integration of differential forms]])} Let \begin{enumerate}% \item $X$ be a [[smooth set]]; \item $n \geq k \in \mathbb{N}$; \item $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$. \end{enumerate} Then we write \begin{displaymath} \int_{\Sigma} \;\colon\; [\Sigma_k, \mathbf{\Omega}^n] \longrightarrow \mathbf{\Omega}^{n-k} \end{displaymath} for the [[smooth function]] which takes a plot $\omega_{(-)} \colon U \to [\Sigma, \mathbf{\Omega}^k]$, hence equivalently a differential $n$-form $\omega_{(-)}(-)$ on $U \times \Sigma$ to the result of [[integration of differential forms]] over $\Sigma$: \begin{displaymath} \int_{\Sigma} \omega_{(-)}(-) \coloneqq \int_\Sigma \omega_{(-)} \,. \end{displaymath} \end{defn} \begin{defn} \label{TransgressionOfDifferentialFormsToMappingSpaces}\hypertarget{TransgressionOfDifferentialFormsToMappingSpaces}{} \textbf{([[transgression of differential forms]] to [[mapping spaces]])} Let \begin{enumerate}% \item $X$ be a [[smooth set]]; \item $n \geq k \in \mathbb{N}$; \item $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$. \end{enumerate} Then the operation of \emph{transgression of differential $n$-forms} on $X$ with respect to $\Sigma$ is the [[function]] \begin{displaymath} \tau_\Sigma \coloneqq \int_\Sigma [\Sigma,-] \;\colon\; \Omega^n(X) \to \Omega^{n-k}([\Sigma,X]) \end{displaymath} from differential $n$-forms on $X$ to differential $n-k$-forms on the [[mapping space]] $[\Sigma,X]$ which takes the differential form corresponding to the smooth function \begin{displaymath} (X \stackrel{\omega}{\to} \Omega^n) \in \Omega^n(X) \end{displaymath} to the differential form corresponding to the following composite smooth funtion: \begin{displaymath} \tau_\Sigma \omega \coloneqq \int_{\Sigma} [\Sigma,\omega] \;\colon\; [\Sigma, X] \stackrel{[\Sigma, \omega]}{\to} [\Sigma, \Omega^n] \stackrel{\int_{\Sigma}}{\to} \Omega^{n-k} \,, \end{displaymath} where $[\Sigma,\omega]$ is the [[mapping space]] [[functor]] on [[morphisms]] and $\int_{\Sigma}$ is the parameterized integration of differential forms from def. \ref{ParameterizedIntegrationOfDifferentialForms}. More explicitly in terms of plots this means equivalently the following A plot of the [[mapping space]] \begin{displaymath} \phi_{(-)} \;\colon\; U \to [\Sigma, X] \end{displaymath} is equivalently a [[smooth function]] of the form \begin{displaymath} \phi_{(-)}(-) \;\colon\; U \times \Sigma \to X \,. \end{displaymath} The smooth function $[\Sigma,\omega]$ takes this smooth function to the plot \begin{displaymath} U \times \Sigma \to X \overset{\phi_{(-)}(-)}{\longrightarrow} X \overset{\omega}{\longrightarrow} \mathbf{\Omega}^{n} \end{displaymath} which is equivalently a differential form \begin{displaymath} (\phi_{(-)}(-))^\ast \omega \in \Omega^n(U \times \Sigma) \,. \end{displaymath} Finally the smooth function $\int_\Sigma$ takes this to the result of [[integration of differential forms]] over $\Sigma$: \begin{displaymath} \tau_{\Sigma}\omega\vert_{\phi_{(-)}} \;=\; \int_\Sigma (\phi_{(-)}(-))^\ast \omega \;\in\; \Omega^{n-k}(U) \,. \end{displaymath} \end{defn} \begin{defn} \label{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap}\hypertarget{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap}{} \textbf{([[transgression of differential forms]] to mapping space via evaluation map)} Let \begin{enumerate}% \item $X$ be a [[smooth set]]; \item $n \geq k \in \mathbb{N}$; \item $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$. \end{enumerate} Then the operation of \emph{transgression of differential $n$-forms} on $X$ with respect to $\Sigma$ is the [[function]] \begin{displaymath} \tau_\Sigma \coloneqq \int_\Sigma ev^\ast \;\colon\; \Omega^n(X) \overset{ev^\ast}{\longrightarrow} \Omega^n(\Sigma \times [\Sigma, X]) \overset{\int_\Sigma}{\longrightarrow} \Omega^{n-k}([\Sigma,X]) \end{displaymath} from differential $n$-forms on $X$ to differential $n-k$-forms on the [[mapping space]] $[\Sigma,X]$ which is the [[composition|composite]] of forming the [[pullback of differential forms]] along the [[evaluation map]] $ev \colon [\Sigma, X] \times \Sigma \to X$ with [[integration of differential forms]] over $\Sigma$. \end{defn} \begin{prop} \label{EquivalenceOfTransgressionOfDifferentialFormsToMappingSpaces}\hypertarget{EquivalenceOfTransgressionOfDifferentialFormsToMappingSpaces}{} The two definitions of transgression of differential forms to mapping spaces from def. \ref{TransgressionOfDifferentialFormsToMappingSpaces} and def. \ref{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap} are equivalent. \end{prop} \begin{proof} We need to check that for all plots $\gamma \colon U \to [\Sigma, X]$ the pullbacks of the two forms to $U$ coincide. For def. \ref{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap} we get \begin{displaymath} \gamma^\ast \int_\Sigma \mathrm{ev}^\ast A = \int_\Sigma (\gamma,\mathrm{id}_\Sigma)^\ast \mathrm{ev}^\ast A \; \in \Omega^n(U) \end{displaymath} Here we recognize in the integrand the pullback along the $( (-)\times \Sigma \dashv [\Sigma,-])$-[[adjunct]] $\tilde \gamma : U \times \Sigma \to \Sigma$ of $\gamma$, which is given by applying the [[left adjoint]] $(-)\times \Sigma$ and then postcomposing with the adjunction counit $\mathrm{ev}$: \begin{displaymath} \itexarray{ U \times \Sigma & \overset{(\gamma, \mathrm{id}_\Sigma)}{\longrightarrow} & [\Sigma,X] \times \Sigma & \overset{\mathrm{ev}}{\longrightarrow} & X } \,. \end{displaymath} Hence the integral is now \begin{displaymath} \cdots = \int_{\Sigma} \tilde \gamma^\ast A \,. \end{displaymath} This is the operation of the top horizontal composite in the following [[natural transformation|naturality square]] for [[adjuncts]], and so the claim follows by its [[commuting diagram|commutativity]]: \begin{displaymath} \itexarray{ \tilde \gamma \in & \mathbf{H}(U \times\Sigma, X) & \overset{\mathbf{H}(U \times \Sigma,A)}{\longrightarrow} & \mathbf{H}(U \times \Sigma, \mathbf{\Omega}^{n+k}) & \overset{\int_\Sigma(U)}{\longrightarrow} & \Omega^n(U) \\ & {}^{\mathllap{\simeq}}\downarrow && {}^{\mathllap{\simeq}}\downarrow && {}^{\mathllap{\simeq}}\downarrow \\ \gamma \in & \mathbf{H}(U,[\Sigma,X]) & \overset{\mathbf{H}(U,[\Sigma,A])}{\longrightarrow} & \mathbf{H}(U,[\Sigma,\mathbf{\Omega}^{n+k}]) & \overset{\mathbf{H}(U,\int_\Sigma)}{\longrightarrow} & \mathbf{H}(U,\mathbf{\Omega}^n) } \end{displaymath} (here we write $\mathbf{H}(-,-)$ for the [[hom functor]] of [[smooth sets]]). \end{proof} \hypertarget{properties}{}\paragraph*{{Properties}}\label{properties} \begin{example} \label{}\hypertarget{}{} \textbf{(relative transgression over [[manifolds with boundary]])} \begin{enumerate}% \item $X$ be a [[smooth set]]; \item $n \geq k \in \mathbb{N}$; \item $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$ with [[manifold with boundary|boundary]] $\partial \Sigma$ \item $\omega \in \Omega^n_{X}$ a [[closed differential form]]. \end{enumerate} Write \begin{displaymath} (-\vert_{\partial \Sigma}) \coloneqq [\partial \Sigma \hookrightarrow \Sigma, X] \;\colon\; [\Sigma, X] \longrightarrow [\partial \Sigma, X] \end{displaymath} for the smooth function that restricts smooth functions on $\Sigma$ to smooth functions on the [[boundary]] $\partial \Sigma$. Then the operations of transgression of differential forms (def. \ref{TransgressionOfDifferentialFormsToMappingSpaces}) to $\Sigma$ and to $\partial \Sigma$, respectively, are related by \begin{displaymath} d \left( \tau_{\Sigma}(\omega) \right) = (-1)^{k+1} (-\vert_{\partial \Sigma})^\ast \tau_{\partial \Sigma}(\omega) \phantom{AAAAAAAA} \itexarray{ [\Sigma, X] &\overset{ \tau_{\Sigma}(\omega) }{\longrightarrow}& \mathbf{\Omega}^{n-k} \\ {}^{\mathllap{(-\vert_{\partial \Sigma}) }}\downarrow && \downarrow^{\mathrlap{ (-1)^{k+1} d}} \\ [\partial \Sigma, X] &\underset{ \tau_{\partial\Sigma}(\omega) }{\longrightarrow}& \mathbf{\Omega}^{n-k+1} } \,. \end{displaymath} In particular this means that if the compact manifold $\Sigma$ happens to have no boundary (is a [[closed manifold]]) then transgression over $\Sigma$ takes closed differential forms to closed differential forms. \end{example} \begin{proof} Let $\phi_{(-)}(-) \colon U \times \Sigma \to X$ be a plot of the mapping space $[\Sigma, X]$. Notice that the [[de Rham differential]] on the [[Cartesian product]] $U \times \Sigma$ decomposes as \begin{displaymath} d = d_U + d_\Sigma \,. \end{displaymath} Now we compute as follows: \begin{displaymath} \begin{aligned} d \tau_{\Sigma}\omega\vert_{\phi_(-)} & = d_U \int_\Sigma (\phi_{(-)}(-))^\ast \omega \\ & = (-1)^k \int_\Sigma d_U (\phi_{(-)}(-))^\ast \omega \\ & = (-1)^k \int_\Sigma (d - d \Sigma) (\phi_{(-)}(-))^\ast \omega \\ & = (-1)^k \int_\Sigma d (\phi_{(-)}(-))^\ast \omega - (-1)^k \int_\Sigma d_\Sigma (\phi_{(-)}(-))^\ast \omega \\ & = (-1)^k \int_\Sigma (\phi_{(-)}(-))^\ast \underset{= 0}{\underbrace{d \omega}} - (-1)^k \int_\Sigma d_\Sigma (\phi_{(-)}(-))^\ast \omega \\ & = - (-1)^k \int_\Sigma d_\Sigma (\phi_{(-)}(-))^\ast \omega \\ & = -(-1)^k \int_{\partial \Sigma} (\phi_{(-)}(-))^\ast \omega \\ & = -(-1)^k \tau_{\partial \Sigma} \omega \vert_{\phi_{(-)}} \end{aligned} \end{displaymath} where in the second but last step we used [[Stokes' theorem]]. \end{proof} We next discuss some examples and applications: \begin{itemize}% \item \hyperlink{GaugeCouplingActionFunctionalOfChargedParticle}{Gauge coupling action functional of charged particle} \item \hyperlink{TransgressionOfKillingFormToSymplecticFormOfChernSimons}{Transgression of Killing form to symplectic form of Chern-Simons theory} \end{itemize} \hypertarget{GaugeCouplingActionFunctionalOfChargedParticle}{}\paragraph*{{Gauge coupling action functional of charged particle}}\label{GaugeCouplingActionFunctionalOfChargedParticle} Let $X \in \mathbf{H}$ and consider a [[circle group]]-[[principal connection]] $\nabla \colon X \to \mathbf{B}U(1)_{conn}$ over $X$. By the discussion in \emph{\hyperlink{DiracChargeQuantizationAndElectromagneticField}{Dirac charge quantization and the electromagnetic field}} above this encodes an [[electromagnetic field]] on $X$. Assume for simplicity here that the underlying [[circle principal bundle]] is trivialized, so that then the connection is equivalently given by a differential 1-form \begin{displaymath} \nabla = A \colon X \to \Omega^1 \,, \end{displaymath} the [[electromagnetic potential]]. Let then $\Sigma = S^1$ be the [[circle]]. The [[transgression]] of the electromagnetic potential to the [[loop space]] of $X$ \begin{displaymath} \int_{S^1} [S^1, A] \;\colon\; [S^1, X] \stackrel{[S^1, A]}{\to} [S^1 , \Omega^1] \stackrel{\int_{S^1}}{\to} \Omega^0 \simeq \mathbb{R} \end{displaymath} is the [[action functional]] for an [[electron]] or other electrically charged [[particle]] in the [[background gauge field]] $A$ is $S_{em} = \int_{S^1} [S^1, A]$. The [[variational calculus|variation]] of this contribution in addition to that of the [[kinetic action]] of the electron gives the \emph{[[Lorentz force]]} law describing the [[force]] exerted by the [[background gauge field]] on the electron. \hypertarget{TransgressionOfKillingFormToSymplecticFormOfChernSimons}{}\paragraph*{{Transgression of Killing form to symplectic form of Chern-Simons theory}}\label{TransgressionOfKillingFormToSymplecticFormOfChernSimons} Let $\mathfrak{g}$ be a [[Lie algebra]] with binary [[invariant polynomial]] $\langle -,-\rangle \colon \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{R}$. For instance $\mathfrak{g}$ could be a [[semisimple Lie algebra]] and $\langle -,-\rangle$ its [[Killing form]]. In particular if $\mathfrak{g} = \mathfrak{su}(n)$ is a [[matrix Lie algebra]] such as the [[special unitary Lie algebra]], then the Killing form is given by the [[trace]] of the product of two matrices. This pairing $\langle -,-\rangle$ defines a differential 4-form on the [[smooth space]] of [[Lie algebra valued 1-forms]] \begin{displaymath} \langle F_{(-)} \wedge F_{(-)} \rangle \colon \Omega^1(-,\mathfrak{g}) \stackrel{F_{(-)}}{\to} \Omega^2(-, \mathfrak{g}) \stackrel{(-)\wedge (-)}{\to} \Omega^4(-, \mathfrak{g}\otimes \mathfrak{g}) \stackrel{\langle-,-\rangle}{\to} \Omega^4 \end{displaymath} Over a [[coordinate patch]] $U \in$ [[CartSp]] this sends a differential 1-form $A \in \Omega^1(U)$ to the differential 4-form \begin{displaymath} \langle F_A \wedge F_A \rangle \in \Omega^4(U) \,. \end{displaymath} The fact that $\langle -, - \rangle$ is indeed an \emph{[[invariant polynomial]]} means that this indeed extends to a 4-form on the smooth [[groupoid of Lie algebra valued forms]] \begin{displaymath} \langle F_{(-)} \wedge F_{(-)}\rangle \colon \mathbf{B}G_{conn} \to \Omega^4 \,. \end{displaymath} Now let $\Sigma$ be an [[orientation|oriented]] [[closed manifold|closed]] [[smooth manifold]]. The [[transgression]] of the above 4-form to the [[mapping space]] out of $\Sigma$ yields the 2-form \begin{displaymath} \omega \coloneqq \int_{\Sigma} \langle F_{(-)}\wedge F_{(-)}\rangle \colon \mathbf{\Omega}^1(\Sigma,\mathfrak{g}) \hookrightarrow [\Sigma, \mathbf{B}G_{conn}] \stackrel{[\Sigma, \langle F_{(-)}\wedge F_{(-)}\rangle]}{\to} [\Sigma, \Omega^4] \stackrel{\int_{\Sigma}}{\to} \Omega^2 \end{displaymath} to the [[moduli stack]] of [[Lie algebra valued 1-forms]] on $\Sigma$. Over a [[coordinate chart]] $U = \mathbb{R}^n \in$ [[CartSp]] an element $A \in \mathbf{\Omega}^1(\Sigma,\mathfrak{g})(\mathbb{R}^n)$ is a $\mathfrak{g}$-valued 1-form $A$ on $\Sigma \times U$ with no leg along $U$. Its [[curvature]] 2-form therefore decomposes as \begin{displaymath} F_A = F_A^{\Sigma} + \delta A \,, \end{displaymath} where $F_A^{\Sigma}$ is the curvature component with all legs along $\Sigma$ and where \begin{displaymath} \delta A \coloneqq - \sum_{i = 1}^n \frac{\partial}{\partial x^i} A \wedge \mathbf{d}x^i \end{displaymath} is the [[variational calculus|variational]] derivative of $A$. This means that in the 4-form \begin{displaymath} \langle F_A \wedge F_A\rangle = \langle F_A^\Sigma \wedge F_A^\Sigma \rangle + 2 \langle F_A^\Sigma \wedge \delta A\rangle + \langle \delta A \wedge \delta A\rangle \in \Omega^4(\Sigma \times U) \end{displaymath} only the last term gives a 2-form contribution on $U$. Hence we find that the transgressed 2-form is \begin{displaymath} \omega = \int_\Sigma \langle \delta A \wedge \delta A\rangle \colon \mathbf{\Omega}^1(\Sigma, \mathfrak{g}) \to \Omega^2 \,. \end{displaymath} When restricted further to flat forms \begin{displaymath} \mathbf{\Omega^1}_{flat}(\Sigma,\mathfrak{g}) \hookrightarrow \mathbf{\Omega^1}(\Sigma,\mathfrak{g}) \end{displaymath} which is the [[phase space]] of $\mathfrak{g}$-[[Chern-Simons theory]], then this is the corresponding [[symplectic form]] (by the discussion at \emph{\href{Chern-Simons+theory#CovariantPhaseSpace}{Chern-Simons theory -- covariant phase space}}). \hypertarget{transgression_of_circle_bundles_with_connection}{}\paragraph*{{Transgression of circle $n$-bundles with connection}}\label{transgression_of_circle_bundles_with_connection} \begin{itemize}% \item [[fiber integration in ordinary differential cohomology]] \end{itemize} \hypertarget{action_functionals_from_transgression}{}\paragraph*{{Action functionals from transgression}}\label{action_functionals_from_transgression} (\ldots{}) \hypertarget{LieIntegration}{}\paragraph*{{Lie integration}}\label{LieIntegration} \begin{itemize}% \item [[Lie integration]] \end{itemize} \hypertarget{IntegrationSemanticLayer}{}\subsubsection*{{Semantic Layer}}\label{IntegrationSemanticLayer} \hypertarget{integration_and_higher_holonomy}{}\paragraph*{{Integration and higher holonomy}}\label{integration_and_higher_holonomy} [[integration]]/[[higher holonomy]] is \begin{displaymath} \exp(2 \pi i \int_{\Sigma}(-)) \colon [\Sigma_n, \mathbf{B}^n U(1)_{conn}] \to Conc \tau_0 [\Sigma, \mathbf{B}^n U(1)] \simeq U(1) \end{displaymath} \hypertarget{transgression_2}{}\paragraph*{{Transgression}}\label{transgression_2} [[transgression]] is \begin{displaymath} [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \stackrel{\exp(2 \pi i \int_{\Sigma_k}) (-) }{\to} \mathbf{B}^{n-k} U(1)_{conn} \end{displaymath} \hypertarget{SemLayerActionFunctionalsFromLagrangeans}{}\paragraph*{{Action functionals from Lagrangeans}}\label{SemLayerActionFunctionalsFromLagrangeans} and [[schreiber:infinity-Chern-Simons theory|higher Chern-Simons]] [[action functionals]] induced from \begin{displaymath} \mathbf{L} \colon \mathbf{B}G_{conn} \to \mathbf{B}^n U(1)_{conn} \end{displaymath} are \begin{displaymath} \exp\left(i S\left(-\right)\right) \coloneqq \exp(2 \pi \in \int_{\Sigma_k} [\Sigma_k, \mathbf{L}] ) \colon [\Sigma_k, \mathbf{B}G] \stackrel{[\Sigma_k, \mathbf{L}]}{\to} [\Sigma_k, \mathbf{B}^n U(1)] \stackrel{\exp(2 \pi i\left(-\right))}{\to} \mathbf{B}^{n-k} U(1)_{conn} \end{displaymath} here $\mathbf{L}$ is the [[Lagrangean]]. \hypertarget{syntactic_layer}{}\subsubsection*{{Syntactic Layer}}\label{syntactic_layer} (\ldots{}) \end{document}