\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- perturbative quantum field theory} [[!redirects geometry of physics -- A first idea of quantum field theory]] These notes mean to give an expository but rigorous introduction to the basic concepts of [[relativistic quantum field theory|relativistic]] [[perturbative quantum field theories]], specifically those that arise as the [[perturbative quantum field theory|perturbative]] [[quantization]] of \emph{[[Lagrangian field theories]]} -- such as [[quantum electrodynamics]], [[quantum chromodynamics]], and [[perturbative quantum gravity]] appearing in the [[standard model of particle physics]]. $\,$ \begin{quote}% This is one chapter of \emph{[[geometry of physics]]}. Previous chapters: \emph{[[geometry of physics -- smooth sets|smooth sets]]}, \emph{[[geometry of physics -- supergeometry|supergeometry]]}. \end{quote} $\,$ \hypertarget{contents}{}\section*{{Contents}}\label{contents} $\,$ For broad introduction of the idea of the topic of \emph{[[perturbative quantum field theory]]} see [[perturbative quantum field theory|there]] and see \begin{itemize}% \item PhysicsForums-Insights: \emph{\href{https://www.physicsforums.com/insights/paqft-idea-references/}{Introduction to Perturbative Quantum Field Theory}} \end{itemize} Here, first we consider [[classical field theory]] (or rather [[pre-quantum field theory]]), complete with [[BV-BRST formalism]]; then its [[deformation quantization]] via [[causal perturbation theory]] to [[perturbative quantum field theory]]. This mathematically rigorous (i.e. clear and precise) formulation of the traditional informal lore has come to be known as \emph{[[perturbative algebraic quantum field theory]]}. We aim to give a \emph{fully [[local field theory|local]]} discussion, where all structures arise on the ``[[jet bundle]] over the [[field bundle]]'' (introduced \hyperlink{FieldVariations}{below}) and ``[[transgression|transgress]]'' from there to the [[spaces of field histories]] over [[spacetime]] (discussed \hyperlink{Observables}{further below}). This ``[[schreiber:Higher Prequantum Geometry]]'' streamlines traditional constructions and serves the conceptualization in the theory. This is joint work with [[Igor Khavkine]]. In full beauty these concepts are extremely general and powerful; but the aim here is to give a first precise idea of the subject, not a fully general account. Therefore we concentrate on the special case where [[spacetime]] is [[Minkowski spacetime]] (def. \ref{MinkowskiSpacetime} below), where the [[field bundle]] (def. \ref{FieldsAndFieldBundles} below) is an ordinary [[trivial vector bundle]] (example \ref{TrivialVectorBundleAsAFieldBundle} below) and hence the [[Lagrangian density]] (def. \ref{LocalLagrangianDensityOnSecondOrderJetBundleOfTrivialVectorBundleOverMinkowskiSpacetime} below) is [[locally variational field theory|globally defined]]. Similarly, when considering [[gauge theory]] we consider just the special case that the [[gauge parameter]]-bundle is a [[trivial vector bundle]] and we concentrate on the case that the gauge symmetries are ``closed irreducible'' (def. \ref{GaugeParametersClosed} below). But we aim to organize all concepts such that the \emph{structure} of their generalization to [[AQFT on curved spacetime|curved spacetime]] and non-trivial [[field bundles]] is immediate. This comparatively simple setup already subsumes what is considered in traditional texts on the subject; it captures the established [[perturbative quantum field theory|perturbative]] [[BV formalism|BRST-BV quantization]] of [[gauge fields]] coupled to [[fermions]] [[AQFT on curved spacetime|on curved spacetimes]] -- which is the state of the art. Further generalization, necessary for the discussion of global topological effects, such as [[instanton]] configurations of [[gauge fields]], will be discussed elsewhere (see at \emph{[[homotopical algebraic quantum field theory]]}). Alongside the theory we develop the concrete examples of the [[real scalar field]], the [[electromagnetic field]] and the [[Dirac field]]; eventually combining these to a disussion of [[quantum electrodynamics]]. \textbf{running examples} \begin{tabular}{l|l|l|l} [[field (physics)&field]]&[[field bundle]]&[[Lagrangian density]]\\ \hline [[real scalar field]]&expl. \ref{RealScalarFieldBundle}&expl. \ref{LagrangianForFreeScalarFieldOnMinkowskiSpacetime}&expl. \ref{FreeScalarFieldEOM}\\ [[Dirac field]]&expl. \ref{DiracFieldBundle}&expl. \ref{LagrangianDensityForDiracField}&expl. \ref{EquationOfMotionOfDiracFieldIsDiracEquation}\\ [[electromagnetic field]]&expl. \ref{Electromagnetism}&expl. \ref{ElectromagnetismLagrangianDensity}&expl. \ref{ElectromagnetismEl}\\ [[Yang-Mills field]]&expl. \ref{YangMillsFieldOverMinkowski}, expl. \ref{YangMillsFieldInInstantonSector}&expl. \ref{YangMillsLagrangian}&expl. \ref{YangMillsOnMinkowskiEl}\\ [[B-field]]&expl. \ref{BField}&expl \ref{BFieldLagrangianDensity}&expl. \ref{EulerLagrangeFormBField}\\ \end{tabular} $\,$ \begin{tabular}{l|l|l|l|l} [[field (physics)&field]]&[[Poisson bracket]]&[[causal propagator]]&[[Wightman propagator]]\\ \hline [[real scalar field]]&expl. \ref{PeierlsBracketEistsForScalarFieldAndDiracField}, expl. \ref{PoissonBracketForRealScalarField}&prop. \ref{ModeExpansionOfCausalPropagatorForKleinGordonOnMinkowski}&def. \ref{StandardHadamardDistributionOnMinkowskiSpacetime}&def. \ref{FeynmanPropagatorForKleinGordonEquationOnMinkowskiSpacetime}\\ [[Dirac field]]&expl. \ref{PeierlsBracketEistsForScalarFieldAndDiracField}, expl. \ref{PoissonBracketForDiracField}&prop. \ref{DiracEquationOnMinkowskiSpacetimeAdvancedAndRetardedPropagators}&def. \ref{HadamardPropagatorForDiracOperatorOnMinkowskiSpacetime}&def. \ref{FeynmanPropagatorForDiracOperatorOnMinkowskiSpacetime}\\ [[electromagnetic field]]&&prop. \ref{PhotonPropagatorInGaussianAveragedLorenzGauge}&&prop. \ref{PhotonPropagatorInGaussianAveragedLorenzGauge}\\ \end{tabular} $\,$ \begin{tabular}{l|l|l|l} [[field (physics)&field]]&[[gauge symmetry]]&[[local BRST complex]]\\ \hline [[electromagnetic field]]&expl. \ref{InfinitesimalGaugeSymmetryElectromagnetism}&expl. \ref{LocalBRSTComplexForFreeElectromagneticFieldOnMinkowskiSpacetim}&expl. \ref{NLGaugeFixingOfElectromagnetism}\\ [[Yang-Mills field]]&expl. \ref{InfinitesimalGaugeSymmetryOfYangMillsTheory}&expl. \ref{YangMillsLocalBRSTComplex}&\ldots{}\\ [[B-field]]&expl. \ref{InfinitesimalGaugeSymmetryOfTheBField}&expl. \ref{LocalBRSTComplexBFieldMinkowskiSpacetime}&\ldots{}\\ \end{tabular} $\,$ \begin{tabular}{l|l|l} [[interacting field theory]]&[[interaction]] [[Lagrangian density]]&[[interaction]] [[Wick algebra]]-element\\ \hline [[phi{\tt \symbol{94}}n theory]]&exp. \ref{phintheoryLagrangian}&expl. \ref{InWickAlgebraphinInteraction}\\ [[quantum electrodynamics]]&expl. \ref{LagrangianQED}&expl. \ref{InWickAlgebraElectronPhotonInteraction}\\ \end{tabular} $\,$ \textbf{References} Pointers to the literature are given in each chapter, alongside the text. The following is a selection of these references. The discussion of [[spinors]] in chapter \emph{\hyperlink{Spacetime}{2. Spacetime}} follows \href{spin+representation#BaezHuerta09}{Baez-Huerta 09}. The [[functorial geometry]] of [[supergeometry|supergeometric]] [[spaces of field histories]] in \emph{\hyperlink{Fields}{3. Fields}} follows \href{higher+prequantum+geometry#Schreiber13}{Schreiber 13}. For the [[jet bundle]]-formulation of [[variational calculus]] of [[Lagrangian field theory]] in \emph{\hyperlink{FieldVariations}{4. Field variations}}, and \emph{\hyperlink{Lagrangians}{5. Lagrangians}} we follow \href{variational+bicomplex#Anderson89}{Anderson 89} and \hyperlink{Olver86}{Olver 86}; for \emph{\hyperlink{Symmetries}{6. Symmetries}} augmented by \hyperlink{higher+prequantum+geometry#FRS13b}{Fiorenza-Rogers-Schreiber 13b}. The identification of [[polynomial observables]] with [[distributions]] in \emph{\hyperlink{Observables}{7. Observables}} was observed by \href{distributions+are+the+smooth+linear+functionals#Paugam12}{Paugam 12}. The discussion of the [[Peierls-Poisson bracket]] in \emph{\hyperlink{PhaseSpace}{8. Phase space}} is based on \href{Peierls+bracket#Khavkine14}{Khavkine 14}. The derivation of [[wave front sets]] of [[propagators]] in \emph{\hyperlink{Propagators}{9. Propagators}} takes clues from \href{Hadamard+distribution#Radzikowski96}{Radzikowski 96} and uses results from \href{Cauchy+principal+value#GelfandShilov66}{Gelfand-Shilov 66}. For the general idea of [[BV-BRST formalism]] a good review is \href{BV-BRST+formalism#Henneaux90}{Henneaux 90}. The [[Lie algebroid]]-perspective on [[BRST complexes]] developed in chapter \emph{\hyperlink{GaugeSymmetries}{10. Gauge symmetries}}, may be compared to \href{BRST+complex#Barnich10}{Barnich 10}. For the [[local BV-BRST complexes|local BV-BRST theory]] laid out in chapter \emph{\hyperlink{ReducedPhaseSpace}{11. Reduced phase space}} we are following \href{local+BRST+cohomology#BarnichBrandtHenneaux00}{Barnich-Brandt-Henneaux 00}. For the [[gauge fixing|BV-gauge fixing]] developed in \emph{\hyperlink{GaugeFixing}{12. Gauge fixing}} we take clues from \href{BV-BRST+formalism#FredenhagenRejzner11a}{Fredenhagen-Rejzner 11a}. For the free quantum [[BV-operators]] in \emph{\hyperlink{FreeQuantumFields}{13. Free quantum fields}} and the interacting [[quantum master equation]] in \emph{\hyperlink{InteractingQuantumFields}{15. Interacting quantum fields}} we are following \href{BV-BRST+formalism#FredenhagenRejzner11b}{Fredenhagen-Rejzner 11b}, \href{BV-BRST+formalism#Rejzner11}{Rejzner 11}, which in turn is taking clues from \href{BV-BRST+formalism#Hollands07}{Hollands 07}. The discussion of [[quantization]] in \emph{\hyperlink{Quantization}{13. Quantization}} takes clues from \href{geometric+quantization+of+symplectic+groupoids#EH}{Hawkins 04}, \href{star+product#Collini16}{Collini 16} and spells out the derivation of the [[Moyal star product]] from [[geometric quantization of symplectic groupoids]] due to \href{Moyal+deformation+quantization#GBV}{Gracia-Bondia \& Varilly 94}. The perspective on the [[Wick algebra]] in \emph{\hyperlink{FreeQuantumFields}{14. Free quantum fields}} goes back to \href{Wick+algebra#Dito90}{Dito 90} and was revived for [[pAQFT]] in \href{Wick+algebra#DuetschFredenhagen00}{Dütsch-Fredenhagen 00}. The proof of the folklore result that the perturbative [[Hadamard vacuum state]] on the [[Wick algebra]] is indeed a [[state on a star-algebra|state]] is cited from \href{Wick#algebra#Duetsch18}{Dütsch 18}. The discussion of [[causal perturbation theory]] in \emph{\hyperlink{InteractingQuantumFields}{15. Interacting quantum fields}} follows the original \href{causal+perturbation+theory#EpsteinGlaser73}{Epstein-Glaser 73}. The relevance here of the [[star product]] induced by the [[Feynman propagator]] was highlighted in \href{perturbative+algebraic+quantum+field+theory#FredenhagenRejzner12}{Fredenhagen-Rejzner 12}. The proof that the [[interacting field algebra of observables]] defined by [[Bogoliubov's formula]] is a [[causally local net]] in the sense of the [[Haag-Kastler axioms]] is that of \href{pAQFT#BrunettiFredenhagen00}{Brunetti-Fredenhagen 00}. Our derivation of [[Feynman diagrams|Feynman diagrammatics]] follows \href{Feynman+diagram#Keller10}{Keller 10, chapter IV}, our derivation of the [[quantum master equation]] follows \href{BV-BRST+formalism#Rejzner11}{Rejzner 11, section 5.1.3}, and our discussion of [[Ward identities]] is informed by \href{Ward+identity#Duetsch18}{Dütsch 18, chapter 4}. In chapter \emph{\hyperlink{Renormalization}{16. Renormalization}} we take from \href{renormalization#BrunettiFredenhagen00}{Brunetti-Fredenhagen 00} the perspective of [[Epstein-Glaser renormalization]] via [[extension of distributions]] and from \href{renormalization#BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09} and \href{renormalization#Duetsch10}{Dütsch 10} the rigorous formulation of [[Gell-Mann-Low renormalization cocycle|Gell-Mann \& Low renormalization group flow]], [[UV-regularization]], [[effective quantum field theory]] and [[Polchinski's flow equation]]. $\,$ \textbf{Acknowledgement} These notes profited greatly from discussions with [[Igor Khavkine]] and [[Michael Dütsch]]. Thanks also to [[Marco Benini]], [[Klaus Fredenhagen]], [[Arnold Neumaier]] and [[Kasia Rejzner]] for helpful discussion. $\,$ $\,$ [[!include A first idea of quantum field theory -- Geometry]] [[!include A first idea of quantum field theory -- Spacetime]] [[!include A first idea of quantum field theory -- Fields]] [[!include A first idea of quantum field theory -- Field variations]] [[!include A first idea of quantum field theory -- Lagrangians]] [[!include A first idea of quantum field theory -- Symmetries]] [[!include A first idea of quantum field theory -- Observables]] [[!include A first idea of quantum field theory -- Phase space]] [[!include A first idea of quantum field theory -- Propagators]] [[!include A first idea of quantum field theory -- Gauge symmetries]] [[!include A first idea of quantum field theory -- Reduced phase space]] [[!include A first idea of quantum field theory -- Gauge fixing]] [[!include A first idea of quantum field theory -- Quantization]] [[!include A first idea of quantum field theory -- Free quantum fields]] [[!include A first idea of quantum field theory -- Interacting quantum fields]] [[!include A first idea of quantum field theory -- Renormalization]] [[!redirects A first idea of quantum field theory]] \end{document}