\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- prequantum gauge theory and gravity} \begin{quote}% this entry is going to contain one chapter of \emph{[[geometry of physics]]} \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{prequantum_gauge_theory_and_gravity}{Prequantum gauge theory and gravity}\dotfill \pageref*{prequantum_gauge_theory_and_gravity} \linebreak \noindent\hyperlink{GaugeAndGravityModelLayer}{Model layer}\dotfill \pageref*{GaugeAndGravityModelLayer} \linebreak \noindent\hyperlink{1dCSTheory}{1d Chern-Simons theory}\dotfill \pageref*{1dCSTheory} \linebreak \noindent\hyperlink{2dCSTheory}{2d Chern-Simons theory}\dotfill \pageref*{2dCSTheory} \linebreak \noindent\hyperlink{ModLayerNonabelianChargedParticle}{Nonabelian charged particle and Wilson loops}\dotfill \pageref*{ModLayerNonabelianChargedParticle} \linebreak \noindent\hyperlink{the_group_and_its_lie_algebra}{The group and its Lie algebra}\dotfill \pageref*{the_group_and_its_lie_algebra} \linebreak \noindent\hyperlink{the_coadjoint_orbit_and_the_coset_space_flag_manifold}{The coadjoint orbit and the coset space/ flag manifold}\dotfill \pageref*{the_coadjoint_orbit_and_the_coset_space_flag_manifold} \linebreak \noindent\hyperlink{the_symplectic_form}{The symplectic form}\dotfill \pageref*{the_symplectic_form} \linebreak \noindent\hyperlink{the_prequantum_bundle}{The prequantum bundle}\dotfill \pageref*{the_prequantum_bundle} \linebreak \noindent\hyperlink{the_hamiltonian_action__coadjoint_moment_map}{The Hamiltonian $G$-action / coadjoint moment map}\dotfill \pageref*{the_hamiltonian_action__coadjoint_moment_map} \linebreak \noindent\hyperlink{WilsonLoopsAnd1DCSSigmaModelWithTargetTheCoadjointOrbit}{Wilson loops and 1d Chern-Simons $\sigma$-models with target the coadjoint orbit}\dotfill \pageref*{WilsonLoopsAnd1DCSSigmaModelWithTargetTheCoadjointOrbit} \linebreak \noindent\hyperlink{3dCSTheory}{3d Chern-Simons theory}\dotfill \pageref*{3dCSTheory} \linebreak \noindent\hyperlink{HigherAbelianCSTheory}{$(4k+3)$d $U(1)$-Chern-Simons theory}\dotfill \pageref*{HigherAbelianCSTheory} \linebreak \noindent\hyperlink{7dCSTheory}{7d Chern-Simons theory}\dotfill \pageref*{7dCSTheory} \linebreak \noindent\hyperlink{InfinityCSTheory}{$\infty$-Chern-Simons theory}\dotfill \pageref*{InfinityCSTheory} \linebreak \noindent\hyperlink{StringFieldTheory}{String field theory}\dotfill \pageref*{StringFieldTheory} \linebreak \noindent\hyperlink{EinsteinYangMillsTheory}{Gauge fields and gravity -- Einstein-Maxwell-Yang-Mills theory}\dotfill \pageref*{EinsteinYangMillsTheory} \linebreak \noindent\hyperlink{KaluzaKleinCompactification}{Kaluza-Klein compactification}\dotfill \pageref*{KaluzaKleinCompactification} \linebreak \noindent\hyperlink{StandardModelParticlePhyiscs}{Standard model of particle physics}\dotfill \pageref*{StandardModelParticlePhyiscs} \linebreak \noindent\hyperlink{StandardModelCosmology}{Standard model of cosmology}\dotfill \pageref*{StandardModelCosmology} \linebreak \noindent\hyperlink{GaugeAndGravitySemanticsLayer}{Semantic Layer}\dotfill \pageref*{GaugeAndGravitySemanticsLayer} \linebreak \noindent\hyperlink{GaugeAndGravity1dCSTheory}{1d Chern-Simons theory}\dotfill \pageref*{GaugeAndGravity1dCSTheory} \linebreak \noindent\hyperlink{GaugeAndGravityWilsonLoops}{Nonabelian charged particle trajectories -- Wilson loops}\dotfill \pageref*{GaugeAndGravityWilsonLoops} \linebreak \noindent\hyperlink{FormulationInHigherGeometrySurvey}{Survey}\dotfill \pageref*{FormulationInHigherGeometrySurvey} \linebreak \noindent\hyperlink{FormulationInHigherGeometryDefinitions}{Definitions and constructions}\dotfill \pageref*{FormulationInHigherGeometryDefinitions} \linebreak \noindent\hyperlink{GaugeAndGravityWilsonLoops}{Nonabelian charged particle trajectories -- Wilson loops}\dotfill \pageref*{GaugeAndGravityWilsonLoops} \linebreak \noindent\hyperlink{GaugeFieldsSemanticsLayerChanPatonGaugeField}{2d CS-theory, WZW-term and Chan-Paton gauge fields}\dotfill \pageref*{GaugeFieldsSemanticsLayerChanPatonGaugeField} \linebreak \noindent\hyperlink{TheBFieldAsAPrequantum2Bundle}{The $B$-field as a prequantum 2-bundle}\dotfill \pageref*{TheBFieldAsAPrequantum2Bundle} \linebreak \noindent\hyperlink{PrequantumGaugeFieldsTheChanPatonGaugeField}{The Chan-Paton gauge field}\dotfill \pageref*{PrequantumGaugeFieldsTheChanPatonGaugeField} \linebreak \noindent\hyperlink{TheOpenStringSigmaModel}{The open string sigma-model}\dotfill \pageref*{TheOpenStringSigmaModel} \linebreak \noindent\hyperlink{TheAnomalyFreeOpenStringCouplingToTheChanPatonGaugeField}{The anomaly-free open string coupling to the Chan-Paton gauge field}\dotfill \pageref*{TheAnomalyFreeOpenStringCouplingToTheChanPatonGaugeField} \linebreak \noindent\hyperlink{GaugeAndGravity3dCSWithWilson}{3d Chern-Simons theory with Wilson loops}\dotfill \pageref*{GaugeAndGravity3dCSWithWilson} \linebreak \noindent\hyperlink{GaugeAndGravityChanPatonGaugeFieldsOnDBranes}{Chan-Paton gauge fields on D-branes}\dotfill \pageref*{GaugeAndGravityChanPatonGaugeFieldsOnDBranes} \linebreak \noindent\hyperlink{GaugeAndGravitySyntaxLayer}{Syntactic Layer}\dotfill \pageref*{GaugeAndGravitySyntaxLayer} \linebreak \hypertarget{prequantum_gauge_theory_and_gravity}{}\subsection*{{Prequantum gauge theory and gravity}}\label{prequantum_gauge_theory_and_gravity} In the previous chapters we have set up [[prequantum field theory]] and [[classical field theory]] in generality. Here we discuss examples of such [[field (physics)|field]] [[theory (physics)|theories]] in more detail. \hypertarget{contents_2}{}\paragraph*{{Contents}}\label{contents_2} \begin{enumerate}% \item \hyperlink{GaugeAndGravityModelLayer}{Model layer} We introduce a list of important examples of field theories in fairly tradtional terms. \item \hyperlink{GaugeAndGravitySemanticsLayer}{Semantics layer} We study the above physical systems with the tools of of [[cohesive (∞,1)-topos]]-theory as developed in the previous semantics-layers. \item \hyperlink{GaugeAndGravitySyntaxLayer}{Syntax layer} \end{enumerate} \hypertarget{GaugeAndGravityModelLayer}{}\subsubsection*{{Model layer}}\label{GaugeAndGravityModelLayer} \hypertarget{examples}{}\paragraph*{{Examples}}\label{examples} \begin{enumerate}% \item \hyperlink{1dCSTheory}{1d Chern-Simons theory} \item \hyperlink{ModLayerNonabelianChargedParticle}{Nonabelian charged particle and Wilson loops} \item \hyperlink{2dCSTheory}{2d Chern-Simons theory} \item \hyperlink{3dCSTheory}{3d Chern-Simons theory} \item \hyperlink{HigherAbelianCSTheory}{(4k+3)d U(1)-Chern-Simons theory} \item \hyperlink{7dCSTheory}{7d Chern-Simons theory} \item \hyperlink{InfinityCSTheory}{∞-Chern-Simons theory} \begin{itemize}% \item \hyperlink{StringFieldTheory}{String field theory} \begin{itemize}% \item \hyperlink{EinsteinYangMillsTheory}{Gauge fields and gravity -- Einstein-Maxwell-Yang-Mills theory} \begin{itemize}% \item \hyperlink{KaluzaKleinCompactification}{Kaluza-Klein compactification} \item \hyperlink{StandardModelParticlePhyiscs}{Standard model of particle physics} \item \hyperlink{StandardModelCosmology}{standard model of cosmology} \end{itemize} \end{itemize} \end{itemize} \end{enumerate} \hypertarget{1dCSTheory}{}\paragraph*{{1d Chern-Simons theory}}\label{1dCSTheory} \begin{itemize}% \item [[1d Chern-Simons theory]] \end{itemize} \hypertarget{2dCSTheory}{}\paragraph*{{2d Chern-Simons theory}}\label{2dCSTheory} \begin{itemize}% \item [[2d Chern-Simons theory]] \end{itemize} \hypertarget{ModLayerNonabelianChargedParticle}{}\paragraph*{{Nonabelian charged particle and Wilson loops}}\label{ModLayerNonabelianChargedParticle} The [[prequantum field theory]] which describes the gauge interaction of a single nonabelian charged particle -- a \emph{[[Wilson loop]]} -- turns out to be equivalent to what in mathematics is called the \emph{[[orbit method]]}. We discuss here the traditional formulation of these matters. Below in \emph{\hyperlink{GaugeAndGravityWilsonLoops}{Semantics layer -- Nonabelian charged particle and Wilson loops}} we then show how all this is naturally understood from a certain [[extended Lagrangian]] which is induced by a regular [[coadjoint orbit]]. A useful review of the following is also in (\hyperlink{Beasley}{Beasley, section 4}). \hypertarget{the_group_and_its_lie_algebra}{}\paragraph*{{The group and its Lie algebra}}\label{the_group_and_its_lie_algebra} Throughout, let $G$ be a [[semisimple Lie group|semisimple]] [[compact topological group|compact]] [[Lie group]]. For some considerations below we furthermore assume it to be [[simply connected topological space|simply connected]]. Write $\mathfrak{g}$ for its [[Lie algebra]]. Its canonical (up to scale) binary [[invariant polynomial]] we write \begin{displaymath} \langle -,-\rangle : \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{R} \,. \end{displaymath} Since this is non-degenerate, we may equivalently think of this as an [[isomorphism]] \begin{displaymath} \mathfrak{g} \simeq \mathfrak{g}^* \end{displaymath} that identifies the [[vector space]] underlying the Lie algebra with its [[dual vector space]] $\mathfrak{g}^*$. \hypertarget{the_coadjoint_orbit_and_the_coset_space_flag_manifold}{}\paragraph*{{The coadjoint orbit and the coset space/ flag manifold}}\label{the_coadjoint_orbit_and_the_coset_space_flag_manifold} We discuss the [[coadjoint orbits]] of $G$ and their relation to the [[coset space]]/[[flag manifolds]] of $G$. Write \begin{enumerate}% \item $T \hookrightarrow G$ inclusion of the [[maximal torus]] of $G$. \end{enumerate} 1 $\mathfrak{t} \hookrightarrow \mathfrak{g}$ the corresponding [[Cartan subalgebra]] In all of the following we consider an element $\langle\lambda,-\rangle \in \mathfrak{g}^*$. \begin{defn} \label{}\hypertarget{}{} For $\langle\lambda,-\rangle \in \mathfrak{g}^*$ write \begin{displaymath} \mathcal{O}_\lambda \hookrightarrow \mathfrak{g}^* \end{displaymath} for its [[coadjoint orbit]] \begin{displaymath} \mathcal{O}_{\lambda} = \{ Ad_g^*(\langle\lambda,-\rangle) \in \mathfrak{g}^* | g \in G \} \,. \end{displaymath} Write $G_\lambda \hookrightarrow G$ for the [[stabilizer subgroup]] of $\langle \lambda,-\rangle$ under the coadjoint action. \end{defn} \begin{prop} \label{}\hypertarget{}{} There is an equivalence \begin{displaymath} G/G_\lambda \stackrel{\simeq}{\to} \mathcal{O}_\lambda \end{displaymath} given by \begin{displaymath} g G_\lambda \mapsto Ad_g^* \langle\lambda,-\rangle \,. \end{displaymath} \end{prop} \begin{defn} \label{RegularElement}\hypertarget{RegularElement}{} An element $\langle\lambda,-\rangle \in \mathfrak{g}^*$ is \textbf{regular} if its [[coadjoint action]] [[stabilizer subgroup]] coincides with the [[maximal torus]]: $G_\lambda \simeq T$. \end{defn} \begin{example} \label{}\hypertarget{}{} For generic values of $\lambda$ it is regular. The element in $\mathfrak{g}^*$ farthest from regularity is $\lambda = 0$ for which $G_\lambda = G$ instead. \end{example} \hypertarget{the_symplectic_form}{}\paragraph*{{The symplectic form}}\label{the_symplectic_form} We describe a canonical [[symplectic form]] on the [[coadjoint orbit]]/[[coset]] $\mathcal{O}_\lambda \simeq G/G_\lambda$. Write $\theta \in \Omega^1(G, \mathfrak{g})$ for the [[Maurer-Cartan form]] on $G$. \begin{defn} \label{The2FormOnG}\hypertarget{The2FormOnG}{} Write \begin{displaymath} \Theta_\lambda := \langle \lambda, \theta \rangle \in \Omega^1(G) \end{displaymath} for the 1-form obtained by pairing the value of the Maurer-Cartan form at each point with the gixed element $\lambda \in \mathfrak{g}^*$. Write \begin{displaymath} \nu_\lambda := d_{dR} \Theta_\lambda \end{displaymath} for its [[de Rham differential]]. \end{defn} \begin{prop} \label{TheSymplecticFormOnTheCoset}\hypertarget{TheSymplecticFormOnTheCoset}{} The 2-form $\nu_\lambda$ from def. \ref{The2FormOnG} \begin{enumerate}% \item satisfies \begin{displaymath} \nu_\lambda = \frac{1}{2}\langle \lambda, [\theta\wedge \theta]\rangle \,. \end{displaymath} \item it descends to a closed $G$-invariant 2-form on the [[coset space]], to be denoted by the same symbol \begin{displaymath} \nu_\lambda \in \Omega^2_{cl}(G/G_\lambda)^G \,. \end{displaymath} \item this is non-degenerate and hence defines a [[symplectic form]] on $G/G_\lambda$. \end{enumerate} \end{prop} \hypertarget{the_prequantum_bundle}{}\paragraph*{{The prequantum bundle}}\label{the_prequantum_bundle} We discuss the [[geometric prequantization]] of the [[symplectic manifold]] given by the [[coadjoint orbit]] $\mathcal{O}_\lambda$ equipped with its [[symplectic form]] $\nu_\lambda$ of def. \ref{TheSymplecticFormOnTheCoset}. Assume now that $G$ is [[simply connected topological space|simply connected]]. \begin{prop} \label{WeightsAndCharacters}\hypertarget{WeightsAndCharacters}{} The [[weight lattice]] $\Gamma_{wt} \subset \mathfrak{t}^* \simeq \mathfrak{t}$ of the Lie group $G$ is [[isomorphism|isomorphic]] to the group of [[group characters]] \begin{displaymath} \Gamma_{wt} \stackrel{\simeq}{\to} Hom_{LieGrp}(G,U(1)) \end{displaymath} where the identification takes $\langle \alpha , -\rangle \in \mathfrak{t}^*$ to $\rho_\alpha : T \to U(1)$ given on $t = \exp(\xi)$ for $\xi \in \mathfrak{t}$ by \begin{displaymath} \rho_\alpha : \exp(\xi) \mapsto \exp(i \langle \alpha, \xi\rangle) \,. \end{displaymath} \end{prop} \begin{prop} \label{}\hypertarget{}{} The [[symplectic form]] $\nu_\lambda \in \Omega^2_{cl}(G/T)$ of prop. \ref{TheSymplecticFormOnTheCoset} is integral precisely if $\langle \lambda, - \rangle$ is in the [[weight lattice]]. \end{prop} \hypertarget{the_hamiltonian_action__coadjoint_moment_map}{}\paragraph*{{The Hamiltonian $G$-action / coadjoint moment map}}\label{the_hamiltonian_action__coadjoint_moment_map} The group $G$ canonically [[action|acts]] on the [[coset space]] $G/G_{\lambda}$ (by multiplication from the left). We discuss a lift of this action to a [[Hamiltonian action]] with respect to the [[symplectic manifold]] structure $(G/T, \nu_\lambda)$ of prop. \ref{TheSymplecticFormOnTheCoset}, equivalently a [[momentum map]] exhibiting this Hamiltonian action. \hypertarget{WilsonLoopsAnd1DCSSigmaModelWithTargetTheCoadjointOrbit}{}\paragraph*{{Wilson loops and 1d Chern-Simons $\sigma$-models with target the coadjoint orbit}}\label{WilsonLoopsAnd1DCSSigmaModelWithTargetTheCoadjointOrbit} Above (\ldots{}) we discussed how an [[irreducible representation|irreducible]] [[unitary representation]] of $G$ is encoded by the [[prequantization]] of a [[coadjoint orbit]] $(\mathcal{O}_\lambda, \nu_\lambda)$. Here we discuss how to express [[Wilson loops]]/[[holonomy]] of $G$-[[principal connections]] in this representation as the [[path integral]] of a topological particle charged under this background field, whose [[action functional]] is that of a [[1-dimensional Chern-Simons theory]]. Let $A|_{S^1} \in \Omega^1(S^1, \mathfrak{g})$ be a [[Lie algebra valued 1-form]] on the circle, equivalently a $G$-[[principal connection]] on the circle. For \begin{displaymath} \rho : G \to Aut(V) \end{displaymath} a [[representation]] of $G$, write \begin{displaymath} W_{S^1}^R(A) := hol^R_{S^1}(A) := Tr_R( tra_{S^1}(A) ) \end{displaymath} for the [[holonomy]] of $A$ around the circle in this representation, which is the [[trace]] of its [[parallel transport]] around the circle (for any basepoint). If one thinks of $A$ as a [[background gauge field]] then this is alse called a [[Wilson loop]]. \begin{defn} \label{ActionFunctionalForTopologicalChargedParticle}\hypertarget{ActionFunctionalForTopologicalChargedParticle}{} Let the [[action functional]] \begin{displaymath} \exp(i CS_\lambda(-)^A) \;\colon\; [S^1, G/T] \to U(1) \end{displaymath} be given by sending $g T : S^1 \to G/T$ represented by $g : S^1 \to G$ to \begin{displaymath} \exp(i \int_{S^1} \langle \lambda, A^g\rangle ) \,, \end{displaymath} where \begin{displaymath} A^g := Ad_g(A) + g^* \theta \end{displaymath} is the [[gauge transformation]] of $A$ under $g$. \end{defn} \begin{prop} \label{WilsonLoopIsPartitionFunctionOf1dCSSigmaModel}\hypertarget{WilsonLoopIsPartitionFunctionOf1dCSSigmaModel}{} The [[Wilson loop]] of $A$ over $S^1$ in the unitarry irreducible representation $R$ is proportional to the [[path integral]] of the 1-dimensional [[sigma-model]] with \begin{enumerate}% \item [[target space]] the [[coadjoint orbit]] $\mathcal{O}_\lambda \simeq G/T$ for $\langle \lambda, - \rangle$ the [[weight (in representation theory)|weight]] corresponding to $R$ under the [[Borel-Weil-Bott theorem]] \item [[action functional]] the functional of def. \ref{ActionFunctionalForTopologicalChargedParticle}: \end{enumerate} \begin{displaymath} W_{S^1}^R(A) \propto \int_{[S^1, \mathcal{O}_\lambda]} D(g T) \exp(i \int_{S^1} \langle \lambda, A^g\rangle) \,. \end{displaymath} \end{prop} See for instance (\hyperlink{Beasley}{Beasley, (4.55)}). \begin{remark} \label{}\hypertarget{}{} Notice that since $\mathcal{O}_\lambda$ is a [[manifold]] of finite [[dimension]], the [[path integral]] for a point particle with this target space can be and has been defined rigorously, see at \emph{[[path integral]]}. \end{remark} \hypertarget{3dCSTheory}{}\paragraph*{{3d Chern-Simons theory}}\label{3dCSTheory} \begin{itemize}% \item [[3d Chern-Simons theory]] \end{itemize} \hypertarget{HigherAbelianCSTheory}{}\paragraph*{{$(4k+3)$d $U(1)$-Chern-Simons theory}}\label{HigherAbelianCSTheory} \begin{itemize}% \item [[higher dimensional Chern-Simons theory]] \end{itemize} \hypertarget{7dCSTheory}{}\paragraph*{{7d Chern-Simons theory}}\label{7dCSTheory} \begin{itemize}% \item [[7d Chern-Simons theory]] \end{itemize} \hypertarget{InfinityCSTheory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{InfinityCSTheory} \begin{itemize}% \item [[schreiber:infinity-Chern-Simons theory]] \end{itemize} \hypertarget{StringFieldTheory}{}\paragraph*{{String field theory}}\label{StringFieldTheory} \begin{itemize}% \item [[string field theory]] \end{itemize} \hypertarget{EinsteinYangMillsTheory}{}\paragraph*{{Gauge fields and gravity -- Einstein-Maxwell-Yang-Mills theory}}\label{EinsteinYangMillsTheory} \begin{itemize}% \item [[gravity]] \item [[Yang-Mills theory]] \begin{itemize}% \item [[Yang-Mills instanton]] number = [[second Chern class]] \end{itemize} \item [[Einstein-Yang-Mills theory]] \end{itemize} \hypertarget{KaluzaKleinCompactification}{}\paragraph*{{Kaluza-Klein compactification}}\label{KaluzaKleinCompactification} \begin{itemize}% \item [[Kaluza-Klein compactification]] \end{itemize} \hypertarget{StandardModelParticlePhyiscs}{}\paragraph*{{Standard model of particle physics}}\label{StandardModelParticlePhyiscs} \begin{itemize}% \item [[standard model of particle physics]] \end{itemize} \hypertarget{StandardModelCosmology}{}\paragraph*{{Standard model of cosmology}}\label{StandardModelCosmology} \begin{itemize}% \item [[standard model of cosmology]] \end{itemize} \hypertarget{GaugeAndGravitySemanticsLayer}{}\subsubsection*{{Semantic Layer}}\label{GaugeAndGravitySemanticsLayer} an exposition and survey is in (\hyperlink{FiorenzaSatiSchreiberCSIntroAndSurvey}{FSS 13}). \hypertarget{}{}\paragraph*{{\{\}}}\label{} \begin{enumerate}% \item \hyperlink{GaugeAndGravity1dCSTheory}{1d Chern-Simons theory} \item \hyperlink{GaugeAndGravityWilsonLoops}{Nonabelian charged particle trajectories -- Wilson loops} \item \hyperlink{GaugeFieldsSemanticsLayerChanPatonGaugeField}{2d CS theory: WZW terms and Chan-Paton gauge fields} \item \hyperlink{GaugeAndGravity3dCSWithWilson}{3d Chern-Simons theory with Wilson loops} \item \hyperlink{GaugeAndGravityChanPatonGaugeFieldsOnDBranes}{Chan-Paton gauge fields on D-branes} \end{enumerate} \hypertarget{GaugeAndGravity1dCSTheory}{}\paragraph*{{1d Chern-Simons theory}}\label{GaugeAndGravity1dCSTheory} For some $n \in \mathbb{N}$ let \begin{displaymath} det \;\colon\; U(n) \to U(1) \end{displaymath} be the [[Lie group]] [[homomorphism]] from the [[unitary group]] to the [[circle group]] which is given by sending a [[unitary matrix]] to its [[determinant]]. Being a Lie group homomorphism, this induces a map of [[deloopings]]/[[moduli stacks]] \begin{displaymath} \mathbf{B}det \;\colon\; \mathbf{B}U(n) \to \mathbf{B}U(1) \end{displaymath} Under [[geometric realization of cohesive infinity-groupoids]] this is the universal [[first Chern class]] \begin{displaymath} {\vert \mathbf{B}det\vert} \simeq c_1 \;\colon\; B U(n) \to B U(1) \simeq K(\mathbb{Z},2) \,. \end{displaymath} Moreiver this has the evident differential refinement \begin{displaymath} \widehat {\mathbf{B} det} \;\colon\; \mathbf{B} U(n)_{conn} \to \mathbf{B} U(1)_{conn} \end{displaymath} given on [[Lie algebra valued 1-forms]] by taking the [[trace]] \begin{displaymath} tr \;\colon\; \mathfrak{u}(n) \to \mathfrak{u}(1) \,. \end{displaymath} So we get a [[1d Chern-Simons theory]] with $\widehat{\mathbf{B}det}$ as its [[extended Lagrangian]]. \hypertarget{GaugeAndGravityWilsonLoops}{}\paragraph*{{Nonabelian charged particle trajectories -- Wilson loops}}\label{GaugeAndGravityWilsonLoops} We consider now [[extended Lagrangians]] defined on [[field (physics)|fields]] as above in \emph{\hyperlink{NonabelianChargedParticle}{Nonabelian charged particle trajectories -- Wilson loops}}. This provides a natural reformulation in [[higher geometry]] of the constructions in the \emph{[[orbit method]]} as reviewed above in \emph{\hyperlink{ModLayerNonabelianChargedParticle}{Model layer -- Nonabelian charged particle}}. \hypertarget{_2}{}\paragraph*{{\{\}}}\label{_2} \begin{enumerate}% \item \hyperlink{FormulationInHigherGeometrySurvey}{Survey} \item \hyperlink{FormulationInHigherGeometryDefinitions}{Definitions and constructions} \item \href{GaugeAndGravityWilsonLoops}{Nonabelian charged particle trajectories -- Wilson loops} \item \hyperlink{ExtendedChern-SimonsTheoryAndWilsonLoops}{3d Chern-Simons theory with Wilson loops}. \end{enumerate} \hypertarget{FormulationInHigherGeometrySurvey}{}\paragraph*{{Survey}}\label{FormulationInHigherGeometrySurvey} We discuss how for $\lambda \in \mathfrak{g}$ a regular element, there is a canonical diagram of [[smooth infinity-groupoid|smooth]] [[moduli stacks]] of the form \begin{displaymath} \itexarray{ \mathcal{O}_\lambda &\stackrel{\simeq}{\to}& G/T &\stackrel{\mathbf{\theta}}{\to}& \Omega^1(-,\mathfrak{g})//T &\stackrel{\langle \lambda, - \rangle}{\to}& \mathbf{B} U(1)_{conn} \\ && \downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\mathbf{J}}} \\ && * &\stackrel{}{\to}& \mathbf{B}G_{conn} &\stackrel{\mathbf{c}}{\to}& \mathbf{B}^3 U(1)_{conn} } \,, \end{displaymath} where \begin{enumerate}% \item $\mathbf{J}$ is the canonical [[2-monomorphism]]; \item the left square is a [[homotopy pullback]] square, hence $\mathbf{\theta}$ is the [[homotopy fiber]] of $\mathbf{J}$; \item the bottom map is the [[extended Lagrangian]] for $G$-[[Chern-Simons theory]], equivalently the universal [[Chern-Simons circle 3-bundle with connection]]; \item the top map denoted $\langle \lambda,- \rangle$ is an [[extended Lagrangian]] for a [[1-dimensional Chern-Simons theory]]; \item the total top composite modulates a [[prequantum circle bundle]] which is a [[prequantization]] of the canonical [[symplectic manifold]] structure on the [[coadjoint orbit]] $\Omega_\lambda \simeq G/T$. \end{enumerate} \hypertarget{FormulationInHigherGeometryDefinitions}{}\paragraph*{{Definitions and constructions}}\label{FormulationInHigherGeometryDefinitions} Write $\mathbf{H} =$ [[Smooth∞Grpd]] for the [[cohesive (∞,1)-topos]] of smooth $\infty$-groupoids. For the following, let $\langle \lambda, - \rangle \in \mathfrak{g}^*$ be a \emph{regular} element, def. \ref{RegularElement}, so that the [[stabilizer subgroup]] is identified with a [[maximal torus]]: $G_\lambda \simeq T$. As usual, write \begin{displaymath} \mathbf{B}G_{conn} \simeq \Omega^1(-,\mathfrak{g})//G \in \mathbf{H} \end{displaymath} for the [[moduli stack]] of $G$-[[principal connections]]. \begin{defn} \label{InclusionOfModuliStacks}\hypertarget{InclusionOfModuliStacks}{} Write \begin{displaymath} \mathbf{J} := ( \Omega^1(-,\mathfrak{g})//T \to \Omega^1(-,\mathfrak{g})//G \simeq \mathbf{B}G_{conn} ) \in \mathbf{H}^{\Delta^1} \end{displaymath} for the canonical map, as indicated. \end{defn} \begin{remark} \label{}\hypertarget{}{} The map $\mathbf{J}$ is the differential refinement of the [[delooping]] $\mathbf{B}T \to \mathbf{B}G$ of the defining inclusion. By the general discussion at [[coset space]] we have a [[homotopy fiber sequence]] \begin{displaymath} \itexarray{ \mathcal{O}_\lambda \simeq G/T &\to& \mathbf{B}T \\ && \downarrow \\ && \mathbf{B}G } \,. \end{displaymath} By the discussion at \emph{[[∞-action]]} this exhibits the canonical [[action]] $\rho$ of $G$ on its [[coset space]]: it is the [[universal associated ∞-bundle|universal rho-associated bundle]]. \end{remark} The following proposition says what happens to this statement under differential refinement \begin{prop} \label{ThetaAsHomotopyFiberOfJ}\hypertarget{ThetaAsHomotopyFiberOfJ}{} The [[homotopy fiber]] of $\mathbf{J}$ in def. \ref{InclusionOfModuliStacks} is \begin{displaymath} \mathbf{\theta} : G/T \stackrel{}{\to} \Omega^1(-,\mathfrak{g})//T \end{displaymath} given over a test manifold $U \in$ [[CartSp]] by the map \begin{displaymath} \mathbf{\theta}_U : C^\infty(U,G/T) \to \Omega^1(U,\mathfrak{g}) \end{displaymath} which sends $g \mapsto g^* \theta$, where $\theta$ is the [[Maurer-Cartan form]] on $G$. \end{prop} \begin{proof} We compute the [[homotopy pullback]] of $\mathbf{J}$ along the point inclusion by the [[factorization lemma]] as discussed at \emph{\href{homotopy%20pullback#ConstructionsGeneral}{homotopy pullback -- Constructions}}. This says that with $\mathbf{J}$ presented canonically as a map of presheaves of groupoids via the above definitions, its homotopy fiber is presented by the presheaf of groupids $hofib(\mathbf{J})$ which is the [[limit]] [[cone]] in \begin{displaymath} \itexarray{ hofib(\mathbf{J}) &\to& &\to& \Omega^1(-, \mathfrak{g}) \\ \downarrow && \downarrow && \downarrow \\ && (\mathbf{B}G_{conn})^I &\to& \mathbf{B}G_{conn} \\ \downarrow && \downarrow \\ * &\stackrel{}{\to}& \mathbf{B}G_{conn} } \,. \end{displaymath} Unwinding the definitions shows that $hofib(\mathbf{J})$ has \begin{enumerate}% \item [[objects]] over a $U \in$ [[CartSp]] are equivalently morphisms $0 \stackrel{g}{\to} g^* \theta$ in $\Omega^1(U,\mathfrak{g})//C^\infty(U,G)$, hence equivalently elements $g \in C^\infty(U,G)$; \item [[morphisms]] are over $U$ [[commuting diagram|commuting triangles]] \begin{displaymath} \itexarray{ g_1^* \theta &&\stackrel{t}{\to}&& g_2^* \theta \\ & {}_{\mathllap{g_1}}\nwarrow && \nearrow_{\mathrlap{g_2}} \\ && 0 } \end{displaymath} in $\Omega^1(U,\mathfrak{g})//C^\infty(U,G)$ with $t \in C^\infty(U,T)$, hence equivalently morphisms \begin{displaymath} g_1 \stackrel{t}{\to} g_2 \end{displaymath} in $C^\infty(U,G)//C^\infty(U,T)$. \item The canonical map $hofib(\mathbf{J}) \to \Omega^1(-,\mathfrak{g})//T$ picks the top horizontal part of these commuting triangles hence equivalently sends $g$ to $g^* \theta$. \end{enumerate} \end{proof} \begin{prop} \label{Extended1dCSLagrangianFromLambda}\hypertarget{Extended1dCSLagrangianFromLambda}{} If $\langle \lambda ,- \rangle \in \Gamma_{wt} \hookrightarrow \mathfrak{g}^*$ is in the [[weight lattice]], then there is a morphism of [[moduli stacks]] \begin{displaymath} \langle \lambda, - \rangle \;\colon\; \Omega^1(-,\mathfrak{g})//T \to \mathbf{B}U(1)_{conn} \end{displaymath} in $\mathbf{H}$ given over a test manifold $U \in$ [[CartSp]] by the [[functor]] \begin{displaymath} \langle \lambda, - \rangle_U \;:\; \Omega^1(U,\mathfrak{g})//C^\infty(U,G) \to \Omega^1(U)//C^\infty(U,U(1)) \end{displaymath} which is given on objects by \begin{displaymath} A \mapsto \langle \lambda, A\rangle \end{displaymath} and which maps morphisms labeled by $\exp(\xi) \in T$, $\xi \in C^\infty(-,\mathfrak{t})$ as \begin{displaymath} \exp(\xi) \mapsto \exp( i \langle \lambda, \xi \rangle ) \,. \end{displaymath} \end{prop} \begin{proof} That this construction defines a map $*//T \to *//U(1)$ is the statement of prop. \ref{WeightsAndCharacters}. It remains to check that the differential 1-forms gauge-transform accordingly. For this the key point is that since $T \simeq G_\lambda$ stabilizes $\langle \lambda , - \rangle$ under the [[coadjoint action]], the [[gauge transformation]] law for points $A : U \to \mathbf{B}G_{conn}$, which for $g \in C^\infty(U,G)$ is \begin{displaymath} A \mapsto Ad_g A + g^* \theta \,, \end{displaymath} maps for $g = exp( \xi ) \in C^\infty(U,T) \hookrightarrow C^\infty(U,G)$ to the gauge transformation law in $\mathbf{B}U(1)_{conn}$: \begin{displaymath} \begin{aligned} \langle \lambda, A \rangle & \mapsto \langle \lambda, Ad_g A\rangle + \langle \lambda, g^* \theta\rangle \\ & = \langle \lambda, A \rangle + d \langle\lambda, \xi \rangle \end{aligned} \end{displaymath} \end{proof} \begin{remark} \label{ThePrequantumBundleFromCanonicalMaps}\hypertarget{ThePrequantumBundleFromCanonicalMaps}{} The composite of the canonical maps of prop. \ref{ThetaAsHomotopyFiberOfJ} and prop. \ref{Extended1dCSLagrangianFromLambda} modulates a canonical [[circle bundle with connection]] on the [[coset space]]/[[coadjoint orbit]]: \begin{displaymath} \langle \lambda, \mathbf{\theta}\rangle : G/T \stackrel{\mathbf{\theta}}{\to} \Omega^1(-,\mathfrak{g})//T \stackrel{\langle \lambda, - \rangle}{\to} \mathbf{B}U(1)_{conn} \,. \end{displaymath} \end{remark} \begin{prop} \label{}\hypertarget{}{} The [[curvature]] 2-form of the circle bundle $\langle \lambda, \mathbf{\theta}\rangle$ from remark \ref{ThePrequantumBundleFromCanonicalMaps} is the [[symplectic form]] of prop. \ref{TheSymplecticFormOnTheCoset}. Therefore $\langle \lambda, \mathbf{\theta}\rangle$ is a [[prequantization]] of the [[coadjoint orbit]] $(\mathcal{O}_\lambda \simeq G/T, \nu_\lambda)$. \end{prop} \begin{proof} The curvature 2-form is modulated by the composite \begin{displaymath} \omega : G/T \stackrel{\mathbf{\theta}}{\to} \Omega^1(-,\mathfrak{g})//T \stackrel{\langle \lambda, - \rangle}{\to} \mathbf{B}U(1)_{conn} \stackrel{F_{(-)}}{\to} \Omega^2_{cl} \,. \end{displaymath} Unwinding the above definitions and propositions, one finds that this is given over a test manifold $U \in$ [[CartSp]] by the map \begin{displaymath} \omega_U : C^\infty(G/T) \to \Omega^2_{cl}(U) \end{displaymath} which sends \begin{displaymath} [g] \mapsto d \langle \lambda, g^* \theta \rangle \,. \end{displaymath} \end{proof} \hypertarget{GaugeAndGravityWilsonLoops}{}\paragraph*{{Nonabelian charged particle trajectories -- Wilson loops}}\label{GaugeAndGravityWilsonLoops} Let $\Sigma$ be an [[orientation|oriented]] [[closed manifold|closed]] [[smooth manifold]] of [[dimension]] 3 and let \begin{displaymath} C \;\colon\; S^1 \hookrightarrow \Sigma \end{displaymath} be a [[submanifold]] inclusion of the [[circle]]: a [[knot]] in $\Sigma$. Let $R$ be an [[irreducible representation|irreducible]] [[unitary representation]] of $G$ and let $\langle \lambda,-\rangle$ be a [[weight (in representation theory)|weight]] corresponding to it by the [[Borel-Weil-Bott theorem]]. Regarding the inclusion $C$ as an object in the [[arrow (∞,1)-topos]] $\mathbf{H}^{\Delta^1}$, say that a [[gauge field]] configuration for $G$-[[Chern-Simons theory]] on $\Sigma$ with [[Wilson loop]] $C$ and labeled by the [[representation]] $R$ is a map \begin{displaymath} \phi \;\colon\; C \to \mathbf{J} \end{displaymath} in the [[arrow (∞,1)-topos]] $\mathbf{H}^{(\Delta^1)}$ of the ambient [[cohesive (∞,1)-topos]]. Such a map is equivalently by a square \begin{displaymath} \itexarray{ S^1 &\stackrel{(A|_{S^1})^g}{\to}& \Omega^1(-,\mathfrak{g})//T \\ \downarrow^{\mathrlap{C}} &\swArrow_{g}& \downarrow^{\mathrlap{\mathbf{J}}} \\ \Sigma &\stackrel{A}{\to}& \mathbf{B}G_{conn} } \end{displaymath} in $\mathbf{H}$. In components this is \begin{itemize}% \item a $G$-[[principal connection]] $A$ on $\Sigma$; \item a $G$-valued function $g$ on $S^1$ \end{itemize} which fixes the field on the circle defect to be $(A|_{S^1})^g$, as indicated. Moreover, a \emph{[[gauge transformation]]} between two such fields $\kappa : \phi \Rightarrow \phi'$ is a $G$-gauge transformation of $A$ and a $T$-gauge transformation of $A|_{S^1}$ such that these intertwine the component maps $g$ and $g'$. If we keep the bulk gauge field $A$ fixed, then his means that two fields $\phi$ and $\phi'$ as above are gauge equivalent precisely if there is a function $t \;\colon\; S^1 \to T$ such that $g = g' t$, hence gauge [[equivalence classes]] of fields for fixed bulk gauge field $A$ are parameterized by their components $[g] = [g'] \in [S^1, G/T]$ with values in the coset space, hence in the coadjoint orbit. For every such field configuration we can evaluate two [[action functionals]]: \begin{enumerate}% \item that of 3d [[Chern-Simons theory]], whose [[extended Lagrangian]] is $\mathbf{c} : \mathbf{B}G_{conn} \to \mathbf{B}^3 U(1)_{conn}$; \item that of the [[1-dimensional Chern-Simons theory]] discussed \hyperlink{WilsonLoopsAnd1DCSSigmaModelWithTargetTheCoadjointOrbit}{above} whose [[extended Lagrangian]] is $\langle \lambda, -\rangle : \Omega^1(-,\mathfrak{g})//T \to \mathbf{B}U(1)_{conn}$, by prop. \ref{Extended1dCSLagrangianFromLambda}. \end{enumerate} These are obtained by postcomposing the above square on the right by these [[extended Lagrangians]] \begin{displaymath} \itexarray{ S^1 &\stackrel{(A|_{S^1})^g}{\to}& \Omega^1(-,\mathfrak{g})//T &\stackrel{\langle \lambda, -\rangle}{\to}& \mathbf{B}U(1)_{conn} \\ \downarrow^{\mathrlap{C}} &\swArrow_{g}& \downarrow^{\mathrlap{\mathbf{J}}} \\ \Sigma &\stackrel{A}{\to}& \mathbf{B}G_{conn} &\stackrel{\mathbf{c}}{\to}& \mathbf{B}U(1)_{conn} } \end{displaymath} and then preforming the [[fiber integration in ordinary differential cohomology]] over $S^1$ and over $\Sigma$, respectively. For the bottom map this gives the ordinary action functional of [[Chern-Simons theory]]. For the top map inspection of the proof of prop. \ref{Extended1dCSLagrangianFromLambda} shows that this gives the 1d Chern-Simons action whose [[partition function]] is the [[Wilson loop]] observable by prop. \ref{WilsonLoopIsPartitionFunctionOf1dCSSigmaModel} above. \hypertarget{GaugeFieldsSemanticsLayerChanPatonGaugeField}{}\paragraph*{{2d CS-theory, WZW-term and Chan-Paton gauge fields}}\label{GaugeFieldsSemanticsLayerChanPatonGaugeField} In the context of [[string theory]], the [[background gauge field]] for the [[open string]] [[sigma-model]] over a [[D-brane]] in [[bosonic string theory]] or [[type II string theory]] is a unitary [[principal bundle]] [[connection on a bundle|with connection]], or rather, by the Kapustin-part of the [[Freed-Witten-Kapustin anomaly cancellation]] mechanism, a [[twisted bundle|twisted unitary bundle]], whose twist is the restriction of the ambient [[B-field]] to the [[D-brane]]. We considered these [[field (physics)|fields]] already \hyperlink{ChanPatonGaugeFields}{above}. Here we discuss the corresponding [[action functional]] for the [[open string]] coupled to these fields The first hint for the existence of such [[background gauge fields]] for the [[open string]] 2d-[[sigma-model]] comes from the fact that the open string's endpoint can naturally be taken to carry labels $i \in \{1, \cdots n\}$. Further analysis then shows that the lowest excitations of these $(i,j)$-strings behave as the quanta of a $U(n)$-[[gauge field]], the $(i,j)$-excitation being the given [[matrix]] element of a $U(n)$-valued connection 1-form $A$. This original argument goes back work by Chan and Paton. Accordingly one speaks of \emph{Chan-Paton factors} and \emph{Chan-Paton bundles} . We discuss the Chan-Paton gauge field and its [[quantum anomaly cancellation]] in [[extended prequantum field theory]]. Throughout we write $\mathbf{H} =$ [[Smooth∞Grpd]] for the [[cohesive (∞,1)-topos]] of [[smooth ∞-groupoids]]. \hypertarget{_3}{}\paragraph*{{\{\}}}\label{_3} \begin{enumerate}% \item \hyperlink{TheBFieldAsAPrequantum2Bundle}{The B-field as a prequantum 2-bundle} \item \hyperlink{PrequantumGaugeFieldsTheChanPatonGaugeField}{The Chan-Paton gauge field} \item \hyperlink{TheOpenStringSigmaModel}{The open string sigma-model} \item \hyperlink{TheAnomalyFreeOpenStringCouplingToTheChanPatonGaugeField}{The anomaly-free open string coupling to the Chan-Paton gauge field} \end{enumerate} \hypertarget{TheBFieldAsAPrequantum2Bundle}{}\paragraph*{{The $B$-field as a prequantum 2-bundle}}\label{TheBFieldAsAPrequantum2Bundle} For $X$ a [[type II supergravity]] [[spacetime]], the [[B-field]] is a map \begin{displaymath} \nabla_B \;\colon\; X \to \mathbf{B}^2 U(1) \,. \end{displaymath} If $X = G$ is a [[Lie group]], this is the [[prequantum 2-bundle]] of $G$-[[Chern-Simons theory]]. Viewed as such we are to find a canonical [[∞-action]] of the [[circle 2-group]] $\mathbf{B}U(1)$ on some $V \in \mathbf{H}$, form the corresponding [[associated ∞-bundle]] and regard the [[sections]] of that as the [[prequantum 2-states]] of the theory. The Chan-Paton gauge field is such a prequantum 2-state. \hypertarget{PrequantumGaugeFieldsTheChanPatonGaugeField}{}\paragraph*{{The Chan-Paton gauge field}}\label{PrequantumGaugeFieldsTheChanPatonGaugeField} We discuss the [[Chan-Paton gauge fields]] over [[D-branes]] in [[bosonic string theory]] and over $Spin^c$-D-branes in [[type II string theory]]. We fix throughout a natural number $n \in \mathbb{N}$, the \emph{[[rank]]} of the Chan-Paton gauge field. \begin{prop} \label{TheLongSequenceOfTheProjectiveUnitaryExtension}\hypertarget{TheLongSequenceOfTheProjectiveUnitaryExtension}{} The [[extension of groups|extension]] of [[Lie groups]] \begin{displaymath} U(1) \to U(n) \to PU(n) \end{displaymath} exhibiting the [[unitary group]] as a [[circle group]]-extension of the [[projective unitary group]] sits in a long [[homotopy fiber sequence]] of [[smooth ∞-groupoids]] of the form \begin{displaymath} U(1) \to U(n) \to PU(n) \to \mathbf{B}U(1) \to \mathbf{B}U(n) \to \mathbf{B}PU(n) \stackrel{\mathbf{dd}_n}{\to} \mathbf{B}^2 U(1) \,, \end{displaymath} where for $G$ a [[Lie group]] $\mathbf{B}G$ is its [[delooping]] [[Lie groupoid]], hence the [[moduli stack]] of $G$-[[principal bundles]], and where similarly $\mathbf{B}^2 U(1)$ is the [[moduli ∞-stack|moduli 2-stack]] of [[circle 2-group]] [[principal 2-bundles]] ([[bundle gerbes]]). \end{prop} \begin{prop} \label{}\hypertarget{}{} Here \begin{displaymath} \mathbf{dd}_n \;\colon\; \mathbf{B} PU(n) \to \mathbf{B}^2 U(1) \end{displaymath} is a smooth refinement of the universal [[Dixmier-Douady class]] \begin{displaymath} dd_n \;\colon\; B PU(n) \to K(\mathbb{Z}, 3) \end{displaymath} in that under [[geometric realization of cohesive ∞-groupoids]] ${\vert- \vert} \colon$ [[Smooth∞Grpd]] $\to$ [[∞Grpd]] we have \begin{displaymath} {\vert \mathbf{dd}_n \vert} \simeq dd_n \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[∞-action]]} the [[homotopy fiber sequence]] in prop. \ref{TheLongSequenceOfTheProjectiveUnitaryExtension} \begin{displaymath} \itexarray{ \mathbf{B} U(n) &\to& \mathbf{B} PU(n) \\ && \downarrow \\ && \mathbf{B}^2 U(1) } \end{displaymath} in $\mathbf{H}$ exhibits a smooth[[∞-action]] of the [[circle 2-group]] on the [[moduli stack]] $\mathbf{B}U(n)$ and it exhibits an equivalence \begin{displaymath} \mathbf{B} PU(n) \simeq (\mathbf{B}U(n))//(\mathbf{B} U(1)) \end{displaymath} of the moduli stack of projective unitary bundles with the [[∞-quotient]] of this [[∞-action]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} For $X \in \mathbf{H}$ a [[smooth manifold]] and $\mathbf{c} \;\colon\; X \to \mathbf{B}^2 U(1)$ modulating a [[circle 2-group]]-[[principal 2-bundle]], maps \begin{displaymath} \mathbf{c} \to \mathbf{dd}_n \end{displaymath} in the [[slice (∞,1)-topos]] $\mathbf{H}_{/\mathbf{B}^2 U(1)}$, hence [[diagrams]] of the form \begin{displaymath} \itexarray{ X &&\stackrel{}{\to}&& \mathbf{B} PU(n) \\ & {}_{\mathllap{\mathbf{c}}}\searrow &\swArrow& \swarrow_{\mathrlap{\mathbf{dd}_n}} \\ && \mathbf{B}^2 U(1) } \end{displaymath} in $\mathbf{H}$ are equivalently rank-$n$ unitary [[twisted bundles]] on $X$, with the twist being the class $[\mathbf{c}] \in H^3(X, \mathbb{Z})$. \end{prop} \begin{prop} \label{DifferentialRefinementOfSMoothDDClass}\hypertarget{DifferentialRefinementOfSMoothDDClass}{} There is a further differential refinement \begin{displaymath} \itexarray{ (\mathbf{B}U(n))//(\mathbf{B}U(1))_{conn} &\stackrel{\widehat \mathbf{dd}_n}{\to}& \mathbf{B}^2 U(1)_{conn} \\ \downarrow && \downarrow \\ (\mathbf{B}U(n))//(\mathbf{B}U(1)) &\stackrel{\widehat \mathbf{dd}_n}{\to}& \mathbf{B}^2 U(1) } \,, \end{displaymath} where $\mathbf{B}^2 U(1)_{conn}$ is the universal moduli 2-stack of [[circle n-bundle with connection|circle 2-bundles with connection]] ([[bundle gerbes]] with connection). \end{prop} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} \left( \left(\mathbf{B}U\left(n\right)//\mathbf{B}U\left(1\right)\right)_{conn} \stackrel{\mathbf{Fields}}{\to} \mathbf{B}^2 U\left(1\right)_{conn} \right) \;\; \in \mathbf{H}_{/\mathbf{B}^2 U(1)_{conn}} \end{displaymath} for the differential smooth universal Dixmier-Douady class of prop. \ref{DifferentialRefinementOfSMoothDDClass}, regarded as an object in the [[slice (∞,1)-topos]] over $\mathbf{B}^2 U(1)_{conn}$. \end{defn} \begin{defn} \label{}\hypertarget{}{} Let \begin{displaymath} \iota_X \;\colon\; Q \hookrightarrow X \end{displaymath} be an inclusion of [[smooth manifolds]] or of [[orbifolds]], to be thought of as a [[D-brane]] [[worldvolume]] $Q$ inside an ambient [[spacetime]] $X$. Then a \textbf{field configuration} of a \emph{[[B-field]]} on $X$ together with a compatible rank-$n$ \textbf{Chan-Paton gauge field} on the [[D-brane]] is a map \begin{displaymath} \phi \;\colon\; \iota_X \to \mathbf{Fields} \end{displaymath} in the [[arrow (∞,1)-topos]] $\mathbf{H}^{(\Delta^1)}$, hence a [[diagram]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ Q &\stackrel{\nabla_{gauge}}{\to}& (\mathbf{B}U(n)//\mathbf{B}U(1)) \\ {}^{\iota_X}\downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\hat \mathbf{dd}_n}} \\ X &\stackrel{\nabla_B}{\to}& \mathbf{B}^2 U(1)_{conn} } \end{displaymath} \end{defn} This identifies a [[twisted bundle]] with connection on the D-brane whose twist is the class in $H^3(X, \mathbb{Z})$ of the bulk [[B-field]]. This relation is the Kapustin-part of the [[Freed-Witten-Kapustin anomaly]] cancellation for the [[bosonic string]] or else for the [[type II string]] on $Spin^c$ D-branes. (\hyperlink{FSS}{FSS}) \begin{remark} \label{}\hypertarget{}{} If we regard the [[B-field]] as a [[background field]] for the [[Chan-Paton gauge field]], then remark \ref{PullbackAlongGeneralizedLocalDiffeomorphisms} determines along which maps of the B-field the Chan-Paton gauge field may be transformed. \begin{displaymath} \itexarray{ Y &\stackrel{}{\to}& X &\stackrel{}{\to}& (\mathbf{B}U(n)//\mathbf{B}U(1))_{conn} \\ & \searrow & \downarrow & \swarrow \\ &&\mathbf{B}^2 U(1)_{conn} } \,. \end{displaymath} On the local connection forms this acts as \begin{displaymath} A \mapsto A + \alpha \,. \end{displaymath} \begin{displaymath} B \mapsto B + d \alpha \end{displaymath} This is the famous gauge transformation law known from the string theory literature. \end{remark} \hypertarget{TheOpenStringSigmaModel}{}\paragraph*{{The open string sigma-model}}\label{TheOpenStringSigmaModel} \begin{remark} \label{}\hypertarget{}{} The [[D-brane]] inclusion $Q \stackrel{\iota_X}{\to} X$ is the [[target space]] for an [[open string]] with [[worldsheet]] $\partial \Sigma \stackrel{\iota_\Sigma}{\hookrightarrow} \Sigma$: a [[field (physics)|field]] configuration of the open string [[sigma-model]] is a map \begin{displaymath} \phi \;\colon\; \iota_\Sigma \to \iota_X \end{displaymath} in $\mathbf{H}^{\Delta^1}$, hence a [[diagram]] of the form \begin{displaymath} \itexarray{ \partial \Sigma &\stackrel{\phi_{bdr}}{\to}& Q \\ \downarrow^{\mathrlap{\iota_\Sigma}} &\swArrow& \downarrow^{\mathrlap{\iota_X}} \\ \Sigma &\stackrel{\phi_{bulk}}{\to}& X } \,. \end{displaymath} For $X$ and $Q$ ordinary [[manifolds]] just says that a field configuration is a map $\phi_{bulk} \;\colon\; \Sigma \to X$ subject to the constraint that it takes the [[boundary]] of $\Sigma$ to $Q$. This means that this is a [[trajectory]] of an [[open string]] in $X$ whose endpoints are constrained to sit on the [[D-brane]] $Q \hookrightarrow X$. If however $X$ is more generally an [[orbifold]], then the [[homotopy]] filling the above diagram imposes this constraint only up to orbifold transformations, hence exhibits what in the physics literature are called ``orbifold twisted sectors'' of open string configurations. \end{remark} \begin{prop} \label{TheTypeIIOpenStringSigmaModelModuliStackOfFields}\hypertarget{TheTypeIIOpenStringSigmaModelModuliStackOfFields}{} The [[moduli stack]] $[\iota_\Sigma, \iota_X]$ of such field configurations is the [[homotopy pullback]] \begin{displaymath} \itexarray{ [\iota_{\Sigma}, \iota_X] &\to& [\Sigma, X] \\ \downarrow &\swArrow& \downarrow \\ [S^1, Q] &\to& [S^1, X] } \,. \end{displaymath} \end{prop} \hypertarget{TheAnomalyFreeOpenStringCouplingToTheChanPatonGaugeField}{}\paragraph*{{The anomaly-free open string coupling to the Chan-Paton gauge field}}\label{TheAnomalyFreeOpenStringCouplingToTheChanPatonGaugeField} \begin{prop} \label{}\hypertarget{}{} For $\Sigma$ a [[smooth manifold]] with [[boundary]] $\partial \Sigma$ of [[dimension]] $n$ and for $\nabla \;\colon \; X \to \mathbf{B}^n U(1)_{conn}$ a [[circle n-bundle with connection]] on some $X \in \mathbf{H}$, then the [[transgression]] of $\nabla$ to the [[mapping space]] $[\Sigma, X]$ yields a [[section]] of the [[complex line bundle]] [[associated bundle|associated]] to the pullback of the ordinary transgression over the mapping space out of the boundary: we have a diagram \begin{displaymath} \itexarray{ [\Sigma, X] &\stackrel{\exp(2 \pi i \int_{\Sigma})}{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow^{\mathrlap{[\partial \Sigma, X]}} && \downarrow^{\mathrlap{\overline{\rho}}_{conn}} \\ [\partial \Sigma, X] &\stackrel{\exp(2 \pi i \int_{\partial \Sigma})}{\to}& \mathbf{B} U(1)_{conn} } \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} This is the \emph{[[higher parallel transport]]} of the $n$-connection $\nabla$ over maps $\Sigma \to X$. \end{remark} \begin{prop} \label{TheTwistedHolonomyMapOnTwistedUnitaryBundles}\hypertarget{TheTwistedHolonomyMapOnTwistedUnitaryBundles}{} The operation of forming the [[holonomy]] of a twisted unitary connection around a curve fits into a [[diagram]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ [S^1, (\mathbf{B}U(n))//(\mathbf{B}U(1))_{conn}] &\stackrel{hol_{S^1}}{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow^{\mathrlap{[S^1, \widehat\mathbf{dd}_n]}} &\swArrow_{\simeq}& \downarrow^{\mathrlap{\overline{\rho}_{conn}}} \\ [S^1, \mathbf{B}^2 U(1)_{conn}] &\stackrel{\exp(2 \pi i \int_{S^1})}{\to}& \mathbf{B}U(1)_{conn} } \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[∞-action]]} the diagram in prop. \ref{TheTwistedHolonomyMapOnTwistedUnitaryBundles} says in particular that forming traced [[holonomy]] of twisted unitary bundles constitutes a [[section]] of the [[complex line bundle]] on the [[moduli stack]] of twisted unitary connection on the circle which is the [[associated bundle]] to the [[transgression]] $\exp(2 \pi i \int_{S^1} [S^1, \widehat\mathbf{dd}_n])$ of the universal differential [[Dixmier-Douady class]]. \end{remark} It follows that on the moduli space of the open string [[sigma-model]] of prop. \ref{TheTypeIIOpenStringSigmaModelModuliStackOfFields} above there are two $\mathbb{C}//U(1)$-valued [[action functionals]] coming from the bulk field and the boundary field \begin{displaymath} \itexarray{ [\iota_{\Sigma}, \iota_X] &\to& [\Sigma, X] &\stackrel{exp(2 \pi i \int_{\Sigma}[\Sigma, \nabla_B] ) }{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow &\swArrow& \downarrow \\ [S^1, Q] &\to& [S^1, X] \\ \downarrow^{\mathrlap{hol_{S^1}([S^1, \nabla_{gauge}])}} \\ \mathbb{C}//U(1)_{conn} } \,. \end{displaymath} Neither is a well-defined $\mathbb{C}$-valued function by itself. But by [[pasting]] the above diagrams, we see that both these constitute [[sections]] of the same [[complex line bundle]] on the moduli stack of fields: \begin{displaymath} \itexarray{ [\iota_{\Sigma}, \iota_X] &\to& [\Sigma, X] &\stackrel{[\Sigma, \nabla_B]}{\to}& [S^1, \mathbf{B}^2 U(1)_{conn}] &\stackrel{\exp(2 \pi i \int_{\Sigma})}{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow &\swArrow& \downarrow && && \downarrow \\ [S^1, Q] &\to& [S^1, X] \\ \downarrow^{\mathrlap{[S^1, \nabla_{gauge}]}} && & \searrow^{\mathrlap{[S^1, \nabla_B]}} & && \downarrow \\ [S^1, (\mathbf{B}U(n))//(\mathbf{B}U(1))_{conn}] & &\stackrel{[S^1, \widehat \mathbf{dd}_n]}{\to}& & [S^1, \mathbf{B}^2 U(1)_{conn}] \\ \downarrow^{\mathrlap{hol_{S^1}}} && && & \searrow^{\mathrlap{\exp(2 \pi i \int_{S^1}(-))}} \\ \mathbb{C}//U(1)_{conn} &\to& &\to& &\to& \mathbf{B}U(1)_{conn} } \,. \end{displaymath} Therefore the product action functional is a well-defined function \begin{displaymath} [\iota_\Sigma, \iota_X] \stackrel{ \exp(2 \pi i \int_{\Sigma} [\Sigma, \nabla_b] ) \cdot hol_{S^1}( [S^1, \widehat {\mathbf{dd}}_n] )^{-1} }{\to} U(1) \,. \end{displaymath} This is the [[Freed-Witten-Kapustin anomaly|Kapustin anomaly]]-free [[action functional]] of the [[open string]]. \hypertarget{GaugeAndGravity3dCSWithWilson}{}\paragraph*{{3d Chern-Simons theory with Wilson loops}}\label{GaugeAndGravity3dCSWithWilson} We discuss how an [[extended Lagrangian]] for $G$-[[Chern-Simons theory]] with [[Wilson loop]] [[QFT with defects|defects]] is naturally obtained from the \hyperlink{FormulationInHigherGeometryDefinitions}{above} [[higher geometry|higher geometric]] formulation of the orbit method. In particular we discuss how the relation between Wilson loops and [[1-dimensional Chern-Simons theory]] [[sigma-models]] with [[target space]] the [[coadjoint orbit]], as discussed \hyperlink{WilsonLoopsAnd1DCSSigmaModelWithTargetTheCoadjointOrbit}{above} is naturally obtained this way. More formally, we have an extended Chern-Simons theory as follows. The [[moduli stack]] of fields $\phi : C \to \mathbf{J}$ in $\mathbf{H}^{(\Delta^1)}$ as above is the [[homotopy pullback]] \begin{displaymath} \itexarray{ \mathbf{Fields}(S^1 \hookrightarrow \Sigma) &\stackrel{}{\to}& [S^1, \Omega^1(-,\mathfrak{g})//T] \\ \downarrow &\swArrow_\simeq& \downarrow \\ [\Sigma, \mathbf{B}G_{conn}] &\to& [S^1, \mathbf{B}G_{conn}] } \end{displaymath} in $\mathbf{H}$, where square brackets indicate the [[internal hom]] in $\mathbf{H}$. Postcomposing the two projections with the two [[transgressions]] of the [[extended Lagrangians]] \begin{displaymath} \exp(2 \pi i \int_\Sigma[\Sigma, \mathbf{c}]) \;\colon\; [\Sigma, \mathbf{B}G_{conn}] \stackrel{[\Sigma, \mathbf{c}]}{\to} [\Sigma, \mathbf{B}^3 U(1)_{conn}] \stackrel{\exp(2 \pi i \int_\Sigma (-))}{\to} U(1) \end{displaymath} and \begin{displaymath} \exp(2 \pi i \int_\Sigma[S^1, \langle \lambda, -\rangle]) \;\colon\; [S^1, \Omega^1(-,\mathfrak{g})//T] \stackrel{[\Sigma, \langle \lambda , -\rangle]}{\to} [S^1, \mathbf{B} U(1)_{conn}] \stackrel{\exp(2 \pi i \int_{S^1} (-))}{\to} U(1) \end{displaymath} to yield \begin{displaymath} \itexarray{ \mathbf{Fields}(S^1 \hookrightarrow \Sigma) &\stackrel{}{\to}& [S^1, \Omega^1(-,\mathfrak{g})//T] &\stackrel{\exp(2 \pi i \int_{S^1} [S^1, \langle \lambda, -\rangle] ) }{\to}& U(1) \\ \downarrow &\swArrow_\simeq& \downarrow \\ [\Sigma, \mathbf{B}G_{conn}] &\to& [S^1, \mathbf{B}G_{conn}] \\ \downarrow^{\mathrlap{\exp(2\pi i \int_{\Sigma_2} [\Sigma_3, \mathbf{c}])}} \\ U(1) } \end{displaymath} and then forming the product yields the action functional \begin{displaymath} \exp(2 \pi i \int_{S^1}[S^1, \langle -\rangle]) \cdot \exp(2 \pi i \int_{\Sigma}[\Sigma, \mathbf{c}]) \;:\; \mathbf{Fields}(S^1 \hookrightarrow \Sigma) \to U(1) \,. \end{displaymath} This is the action functional of 3d $G$-[[Chern-Simons theory]] on $\Sigma$ with Wilson loop $C$ in the representation determined by $\lambda$. Similarly, in [[codimension]] 1 let $\Sigma_2$ now be a 2-dimensional closed manifold, thought of as a slice of $\Sigma$ above, and let $\coprod_i {*} \to \Sigma_2$ be the inclusion of points, thought of as the punctures of the Wilson line above through this slice. Then we have [[prequantum bundles]] given by [[transgression]] of the extended Lagrangians to codimension 1 \begin{displaymath} \exp\left(2 \pi i \int_{\Sigma_2}\left[\Sigma, \mathbf{c}\right]\right) \;\colon\; \left[\Sigma_2, \mathbf{B}G_{conn}\right] \stackrel{\left[\Sigma_2, \mathbf{c}\right]}{\to} \left[\Sigma_2, \mathbf{B}^3 U(1)_{conn}\right] \stackrel{\exp\left(2 \pi i \int_{\Sigma_2} \left(-\right)\right)}{\to} \mathbf{B}U\left(1\right)_{conn} \end{displaymath} and \begin{displaymath} \exp\left(2 \pi i \int_{\coprod_i {*}}\left[\coprod_i {*}, \left\langle \lambda, -\right\rangle\right]\right) \;\colon\; \left[\coprod_i {*}, \Omega^1\left(-,\mathfrak{g}\right)//T\right] \stackrel{[\coprod_i {*}, \langle \lambda , -\rangle]}{\to} \left[\coprod_i {*}, \mathbf{B} U(1)_{conn}\right] \stackrel{\exp\left(2 \pi i \int_{\coprod_i {*}} \left(-\right)\right)}{\to} \mathbf{B}U(1)_{conn} \end{displaymath} and hence a total prequantum bundle \begin{displaymath} \exp\left(2 \pi i \int_{\coprod_i {*}}\left[\coprod_i {*}, \langle \beta, -\rangle\right]\right) \otimes \exp\left(2 \pi i \int_{\Sigma_2}\left[\Sigma_2, \mathbf{c}\right]\right) \;:\; \mathbf{Fields}\left(\coprod_i {*} \hookrightarrow \Sigma\right) \to \mathbf{B}U\left(1\right)_{conn} \,. \end{displaymath} One checks that this is indeed the correct prequantization as considered in (\hyperlink{Witten}{Witten 98, p. 22}). \hypertarget{GaugeAndGravityChanPatonGaugeFieldsOnDBranes}{}\paragraph*{{Chan-Paton gauge fields on D-branes}}\label{GaugeAndGravityChanPatonGaugeFieldsOnDBranes} \hypertarget{GaugeAndGravitySyntaxLayer}{}\subsubsection*{{Syntactic Layer}}\label{GaugeAndGravitySyntaxLayer} (\ldots{}) \end{document}