\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- representations and associated bundles} \begin{quote}% This entry contains one chapter of \emph{[[geometry of physics]]}. See there for background and context. previous chapters: \emph{[[geometry of physics -- groups|groups]]}, \emph{[[geometry of physics|principal bundles]]} next chapter: \emph{[[geometry of physics -- modules|modules]]} \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{representations_and_associated_bundles}{Representations and associated bundles}\dotfill \pageref*{representations_and_associated_bundles} \linebreak \noindent\hyperlink{model_layer}{Model Layer}\dotfill \pageref*{model_layer} \linebreak \noindent\hyperlink{1RepresentationsOf1Groups}{1-Representations of 1-Groups}\dotfill \pageref*{1RepresentationsOf1Groups} \linebreak \noindent\hyperlink{ActionsOf1Groups}{Actions}\dotfill \pageref*{ActionsOf1Groups} \linebreak \noindent\hyperlink{associated_bundles}{Associated bundles}\dotfill \pageref*{associated_bundles} \linebreak \noindent\hyperlink{invariants_and_sections}{Invariants and sections}\dotfill \pageref*{invariants_and_sections} \linebreak \noindent\hyperlink{stabilizer_groups}{Stabilizer groups}\dotfill \pageref*{stabilizer_groups} \linebreak \noindent\hyperlink{representations_of_1groups}{$\infty$-Representations of 1-groups}\dotfill \pageref*{representations_of_1groups} \linebreak \noindent\hyperlink{examples_of_representations}{Examples of $\infty$-Representations}\dotfill \pageref*{examples_of_representations} \linebreak \noindent\hyperlink{semantic_layer}{Semantic Layer}\dotfill \pageref*{semantic_layer} \linebreak \noindent\hyperlink{actions_2}{$\infty$-Actions}\dotfill \pageref*{actions_2} \linebreak \noindent\hyperlink{associated_bundles_2}{Associated $\infty$-bundles}\dotfill \pageref*{associated_bundles_2} \linebreak \noindent\hyperlink{stabilizer_groups_2}{Stabilizer $\infty$-Groups}\dotfill \pageref*{stabilizer_groups_2} \linebreak \noindent\hyperlink{syntactic_layer}{Syntactic Layer}\dotfill \pageref*{syntactic_layer} \linebreak \noindent\hyperlink{the_context_of_a_pointed_connected_type_representation_theory}{The context of a pointed connected type: representation theory}\dotfill \pageref*{the_context_of_a_pointed_connected_type_representation_theory} \linebreak \noindent\hyperlink{dependent_product_over_a_pointed_connected_type_invariants}{Dependent product over a pointed connected type: invariants}\dotfill \pageref*{dependent_product_over_a_pointed_connected_type_invariants} \linebreak \noindent\hyperlink{dependent_sum_over_a_pointed_connected_type_quotients}{Dependent sum over a pointed connected type: quotients}\dotfill \pageref*{dependent_sum_over_a_pointed_connected_type_quotients} \linebreak \hypertarget{representations_and_associated_bundles}{}\subsection*{{Representations and associated bundles}}\label{representations_and_associated_bundles} The mathematical term \emph{group} is short for \emph{group of [[symmetries]]}, namely of symmetries of some object. That a group $G$ is the group of symmetries of some $V$ is technically expressed by there being an [[action]] of $G$ on $X$. Generally, or at least if $V$ and this representation are suitably linear, this is also called a [[representation]] of $G$ (namely a representation of the abstract group as an actual group of symmetries). The chapter \emph{[[geometry of physics -- groups]]} discusses in detail how in geometric [[homotopy theory]] groups $G$ are equivalent to [[groupoids]] $\mathbf{B}G$ which have a single object and $G$ as the [[automorphisms]] of that object, if only $\mathbf{B}G$ is regarded as a [[pointed object]] via the canonical base point inclusion $\ast \to \mathbf{B}G$. This perspective turns out to be exceedingly useful for the discussion of the representations of $G$: these turn out to be equivalent simply to $\mathbf{B}G$-[[dependent types]], hence to any [[bundles]] $E \to \mathbf{B}G$ over $G$. Given such, then the object that $V$ that this encodes an action on is the [[homotopy fiber]] of this map \begin{displaymath} \itexarray{ V &\longrightarrow& E \\ && \downarrow \\ && \mathbf{B}G } \,. \end{displaymath} In traditional literature this is familiar in special cases, where the perspective is usually the opposite: given an [[action]] of $G$ on $V$, then there is the [[associated bundle]] $E = \mathbf{E}G \times_G V$ which is associated to the $G$-[[universal principal bundle]] via the action. Indeed, in the generality of geometric homotopy theory, this association is an equivalence, so that actions and universal associated bundles are essentially the same concept. \hypertarget{model_layer}{}\subsubsection*{{Model Layer}}\label{model_layer} \hypertarget{1RepresentationsOf1Groups}{}\paragraph*{{1-Representations of 1-Groups}}\label{1RepresentationsOf1Groups} We discuss here ordinary [[groups]] (i.e. [[infinity-groups]] which are just 1-groups), and their ordinary [[actions]] and ordinary [[associated bundles]]. Even that ordinary case profits from its formulation via [[action groupoids]], but its key advantage is that this formulation seamlessly generalizes. \hypertarget{ActionsOf1Groups}{}\paragraph*{{Actions}}\label{ActionsOf1Groups} We discuss here traditional concept of [[discrete groups]] [[action|acting]] on a [[sets]] (``[[permutation representations]]'') but phrased in terms of [[action groupoids]] [[slice (infinity,1)-category|sliced]] over [[delooping]] groupoids. The discussion immediately, and essentially verbatim, generalizes to pre-smooth groupoids and to [[smooth groupoids]] proper. Write [[Grpd]] for the [[(2,1)-category]] of [[groupoids]], the [[full sub-(infinity,1)-category]] of [[∞Grpd]] on the [[1-truncated objects]]. We write \begin{displaymath} X_\bullet = (X_1 \stackrel{\longrightarrow}{\longrightarrow} X_0) \end{displaymath} for a [[groupoid object]] given by an explicit choice of set of objects and of morphisms and then write $X \in Grpd$ for the object that this presents in the $(2,1)$-category. Given any such $X$, we recover a presentation by choosing any [[essentially surjective functor]] $S \to X$ (an [[atlas]]) out of a set $S$ (regarded as a groupoid) and setting \begin{displaymath} X_\bullet = (S \underset{X}{\times} S \stackrel{\longrightarrow}{\longrightarrow} S) \end{displaymath} hence taking $S$ as the set of objects and the [[homotopy fiber product]] of $S$ with itself over $X$ as the set of morphism. For $G$ a [[discrete group]], then $\mathbf{B}G$ denotes the [[groupoid]] presented by $(\mathbf{B}G)_\bullet = (G \stackrel{\longrightarrow}{\longrightarrow}\ast)$ with [[composition]] operation given by the product in the group. Of the two possible ways of making this identification, we agree to use \begin{displaymath} \itexarray{ && \ast \\ & {}^{\mathllap{g_1}}\nearrow && \searrow^{\mathrlap{g_2}} \\ \ast && \underset{g_1 \cdot g_2}{\longrightarrow} && \ast } \,. \end{displaymath} \begin{defn} \label{Action1Groupoid}\hypertarget{Action1Groupoid}{} Given a [[discrete group]] $G$ and an [[action]] $\rho$ of $G$ on a [[set]] $S$ \begin{displaymath} \rho \colon S \times G \longrightarrow S \end{displaymath} then the corresponding \emph{[[action groupoid]]} is \begin{displaymath} (S//G)_\bullet \coloneqq \left( S\times G \stackrel{\overset{p_1}{\longrightarrow}}{\underset{\rho}{\longrightarrow}} S \right) \end{displaymath} with [[composition]] given by the product in $G$. Hence the [[objects]] of $S$ are the elements of $S$, and the morphisms $s \stackrel{}{\longrightarrow } t$ are labeled by elements $g\in G$ and are such that $t = \rho(s)(g)$. \end{defn} Schematically: \begin{displaymath} (S//G)_\bullet = \left\{ \itexarray{ && \rho(s)(g) \\ & {}^{\mathllap{g_1}}\nearrow && \searrow^{\mathrlap{g_2}} \\ s && \underset{g_1 g_2}{\longrightarrow} && \rho(s)(g_1 g_2) } \right\} \,. \end{displaymath} \begin{example} \label{}\hypertarget{}{} For the unique and trivial $G$-action on the singleton set $\ast$, we have \begin{displaymath} \ast//G \simeq \mathbf{B}G \,. \end{displaymath} \end{example} This makes it clear that: \begin{prop} \label{MapFromActionGroupoidOnSetBackToBG}\hypertarget{MapFromActionGroupoidOnSetBackToBG}{} In the situation of def. \ref{Action1Groupoid}, there is a canonical morphism of groupoids \begin{displaymath} (p_\rho)_\bullet \;\colon\; (S//G)_\bullet \longrightarrow (\mathbf{B}G)_\bullet \end{displaymath} which, in the above presentation, forgets the labels of the objects and is the identity on the labels of the morphisms. This morphism is an [[isofibration]]. \end{prop} \begin{prop} \label{IntertwinersOfPermutationActionAsSliceHoms}\hypertarget{IntertwinersOfPermutationActionAsSliceHoms}{} For $G$ a [[discrete group]], given two $G$-[[actions]] $\rho_1$ and $\rho_2$ on sets $S_1$ and $S_2$, respectively, then there is a [[natural equivalence]] between the set of action [[homomorphisms]] (``[[intertwiners]]'') $\rho_1 \to \rho_2$, regarded as a groupoid with only identity morphisms, and the [[hom groupoid]] of the [[slice (infinity,1)-category|slice]] $Grpd_{/\mathbf{B}G}$ between their [[action groupoids]] regarded in the slice via the maps from prop. \ref{MapFromActionGroupoidOnSetBackToBG} \begin{displaymath} G Act(\rho_1,\rho_2) \simeq Grpd_{/\mathbf{B}G}(p_{\rho_1}, p_{\rho_2}) \,. \end{displaymath} \end{prop} \begin{proof} One quick way to see this is to use, via the discussion at \emph{[[slice (infinity,1)-category]]}, that the [[hom-groupoid]] in the slice is given by the [[homotopy pullback]] of unsliced hom-groupoids \begin{displaymath} \itexarray{ Grpd_{/\mathbf{B}G}(p_{\rho_1}, p_{\rho_2}) &\longrightarrow& Grpd(S_1//G, S_2//G) \\ \downarrow &(pb)& \downarrow^{\mathrlap{Grpd(S_1//G,p_{\rho_2})}} \\ \ast &\stackrel{}{\longrightarrow}& Grpd(S_1//G, \mathbf{B}G) } \,. \end{displaymath} Now since $(p_{\rho_2})_\bullet$ is an [[isofibration]], so is $Grpd((S_1//G)_\bullet, (p_{\rho_2})_\bullet)$, and hence this is computed as an ordinary pullback (in the above presentation). That in turn gives the [[hom-set]] in the 1-categorical slice. This consists of functors \begin{displaymath} \phi_\bullet \colon (S_1//G)_\bullet \longrightarrow (S_1//G)_\bullet \end{displaymath} which strictly preserves the $G$-labels on the morphisms. These are manifestly the intertwiners. \begin{displaymath} \phi_\bullet \;\colon\; \left( \itexarray{ s \\ \downarrow^{\mathrlap{g}} \\ \rho(s)(g) } \right) \mapsto \left( \itexarray{ \phi(s) \\ \downarrow^{\mathrlap{g}} \\ \phi(\rho(s)(g)) & = \rho(\phi(s))(g) } \right) \,. \end{displaymath} \end{proof} \begin{prop} \label{}\hypertarget{}{} The [[homotopy fiber]] of the morphism in prop. \ref{MapFromActionGroupoidOnSetBackToBG} is [[equivalence of groupoids|equivalent]] to the set $S$, regarded as a groupoid with only identity morphisms, hence we have a [[homotopy fiber sequence]] of the form \begin{displaymath} \itexarray{ S &\longrightarrow& S//G \\ && \downarrow^{\mathrlap{p_\rho}} \\ && \mathbf{B}G } \,. \end{displaymath} \end{prop} \begin{proof} In the presentation $(S//G)_\bullet$ of def. \ref{Action1Groupoid}, $p_\rho$ is an [[isofibration]], prop. \ref{MapFromActionGroupoidOnSetBackToBG}. Hence the [[homotopy fibers]] of $p_\rho$ are equivalent to the ordinary fibers of $(p_\rho)_\bullet$ computed in the 1-category of 1-groupoids. Since $(p_\rho)_\bullet$ is the identity on the labels of the morphisms in this presentation, this ordinary fiber is precisely the sub-groupoid of $(S//G)_\bullet$ consisting of only the identity morphismss, hence is the set $S$ regarded as a groupoid. \end{proof} Conversely, the following construction extract a group action from a homotopy fiber sequence of groupoids of this form. \begin{defn} \label{ActionMapFromFiberSequenceSetToGroupoidToBG}\hypertarget{ActionMapFromFiberSequenceSetToGroupoidToBG}{} Given a [[homotopy fiber sequence]] of [[groupoids]] of the form \begin{displaymath} \itexarray{ S &\stackrel{i}{\longrightarrow}& E \\ && \downarrow^{\mathrlap{p}} \\ && \mathbf{B}G } \end{displaymath} such that $S$ is [[equivalence of groupoids|equivalent]] to a [[set]] $S$, define a $G$-[[action]] on this set as follows. Consider the [[homotopy fiber product]] \begin{displaymath} S \underset{E}{\times} S \stackrel{\overset{}{\longrightarrow}}{\underset{}{\longrightarrow}} S \end{displaymath} of $i$ with itself. By the [[pasting law]] applied to the total homotopy pullback diagram \begin{displaymath} \itexarray{ S \underset{E}{\times} S &\longrightarrow& S \\ \downarrow && \downarrow^{\mathrlap{i}} \\ S &\stackrel{i}{\longrightarrow}& E \\ \downarrow && \downarrow^{\mathrlap{p}} \\ \ast &\longrightarrow& \mathbf{B}G } \;\;\;\; \simeq \;\;\;\; \itexarray{ S\times G &\stackrel{p_1}{\longrightarrow}& S \\ \downarrow && \downarrow \\ G &\stackrel{}{\longrightarrow}& \ast \\ \downarrow && \downarrow \\ \ast &\longrightarrow& \mathbf{B}G } \end{displaymath} there is a canonical [[equivalence of groupoids]] \begin{displaymath} S \underset{E}{\times} S \simeq S \times G \end{displaymath} such that one of the two canonical maps from the fiber product to $S$ is projection on the first factor. The \emph{other} map under this equivalence we denote by $\rho$: \begin{displaymath} S \times G \stackrel{\overset{p_1}{\longrightarrow}}{\underset{\rho}{\longrightarrow}} S \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The functor $i \colon S \to E$ is clerly [[essentially surjective functor|essentially surjective]] (every connected component of $E$ has a homotopy fiber under its map to $\mathbf{B}G$). This implies that $E$ is presented by \begin{displaymath} E_\bullet \coloneqq (S \underset{E}{\times}S \stackrel{\overset{p_1}{\longrightarrow}}{\underset{p_2}{\longrightarrow}} S) \end{displaymath} and hence, via the construction in def. \ref{ActionMapFromFiberSequenceSetToGroupoidToBG}, by \begin{displaymath} E_\bullet \simeq (S \times G \stackrel{\overset{p_1}{\longrightarrow}}{\underset{\rho}{\longrightarrow}} S) \,. \end{displaymath} \end{remark} But this already exhibits $E$ as an [[action groupoid]], in particular it mans that $\rho$ is really an [[action]]: \begin{prop} \label{ActionGroupoidFromFiberSequence}\hypertarget{ActionGroupoidFromFiberSequence}{} The morphism $\rho$ constructed in def. \ref{ActionMapFromFiberSequenceSetToGroupoidToBG} is a $G$-[[action]] in that it satisfies the action propery, which says that the [[diagram]] (of [[sets]]) \begin{displaymath} \itexarray{ S\times G \times G &\stackrel{(id,(-)\cdot(-))}{\longrightarrow}& S \times G \\ \downarrow^{\mathrlap{(\rho,id)}} && \downarrow^{\mathrlap{\rho}} \\ S \times G &\stackrel{\rho}{\longrightarrow}& S } \end{displaymath} [[commuting diagram|commutes]]. \end{prop} \begin{prop} \label{EquivalenceOfPermutationRepresentationsWithActionGroupodsInSlice}\hypertarget{EquivalenceOfPermutationRepresentationsWithActionGroupodsInSlice}{} For $G$ a [[discrete group]], there is an [[equivalence of categories]] \begin{displaymath} G Act(Set) \stackrel{\simeq}{\longrightarrow} (Grpd_{/\mathbf{BG}})_{\leq 0} \end{displaymath} between the category of [[permutation representations]] of $G$ and the full subcategory of the [[slice (infinity,1)-category|slice (2,1)-category]] of [[Grpd]] over $\mathbf{B}G$ on the [[0-truncated objects]]. This equivalence takes an action to its [[action groupoid]]. \end{prop} \begin{proof} By remark \ref{ActionGroupoidFromFiberSequence} the construction of action groupoids is [[essentially surjective functor|essentially surjective]]. By prop. \ref{IntertwinersOfPermutationActionAsSliceHoms} it is [[fully faithful functor|fully faithful]]. \end{proof} \textbf{Examples of actions} One remarkable consequence of prop. \ref{EquivalenceOfPermutationRepresentationsWithActionGroupodsInSlice} is that it says that categories of actions are [[slice (infinity,1)-category|slices]] of [[(2,1)-toposes]], hence are [[slice (infinity,1)-topos|slice (2,1)-toposes]] hence in particular are themselves [[(2,1)-topos]]. In particular there is an [[internal hom]] of actions. This is the [[conjugation action]] construction. \begin{defn} \label{ConjugationActionForDiscrete1Groups}\hypertarget{ConjugationActionForDiscrete1Groups}{} Given a [[discrete group]] $G$ and two $G$-actions $\rho_1$ and $\rho_2$ on [[sets]] $S_1$ and $S_2$, respectively, then the [[function set]] $[S_1, S_2]$ is naturally equipped with the [[conjugation action]] \begin{displaymath} Ad \;\colon \; [S_1, S_2] \times G \longrightarrow [S_1,S_2] \end{displaymath} which takes $((S_1 \stackrel{f}{\to} S_2), g)$ to \begin{displaymath} \rho_2(-)(g)\circ f \circ \rho_1(-)(g^{-1}) \;\colon\; S_1 \stackrel{\rho_1(-)(g^{-1})}{\longrightarrow} S_1 \stackrel{f}{\longrightarrow} S_2\stackrel{\rho_2(-)(g)}{\longrightarrow} S_2 \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The [[conjugation action]] construction of def. \ref{ConjugationActionForDiscrete1Groups} is the [[internal hom]] in the [[category]] of actions. \end{prop} \begin{proof} We need to show that for any three [[permutation representations]], [[functions]] \begin{displaymath} \phi \;\colon\; S_3 \longrightarrow [S_1,S_2] \end{displaymath} which [[intertwiner|intertwine]] the $G$-action on $S_3$ with the conjugation action on $[S_1,S_2]$ are in [[natural bijection]] with functions \begin{displaymath} \tilde \phi \;\colon\; S_3 \times S_1 \longrightarrow S_2 \end{displaymath} which intertwine the diagonal action on the [[Cartesian product]] $S_3 \times S_1$ with the action on $S_2$. The condition on $\phi$ means that for all $g\in G$ and $s_3 \in S_3$ it sends \begin{displaymath} \phi \;\colon\; \rho_3(s_3)(g) \mapsto \left( s_1 \mapsto \rho_2\left( \phi\left(s_3\right)\left( \rho_1\left(s_1\right)\left(g^{-1}\right) \right)\right)\left(g\right) \right) \,. \end{displaymath} This is equivalently a function $\tilde \phi$ of two variables which sends \begin{displaymath} \tilde \phi \;\colon\; (\rho_3(s_3)(g), s_1) \mapsto \rho_2 ( \phi(s_3)( \rho_1(s_1)(g^{-1}) ) )(g) \,. \end{displaymath} Since this has to hold for all values of the variables, it has to hold when substituing $s_1$ with $\rho_1(s_1)(g)$. After this substitution the above becomes \begin{displaymath} \tilde \phi \;\colon\; (\rho_3(s_3)(g), \rho_1(s_1)(g)) \mapsto \rho_2(\phi(s_3)(s_1 ))(g) \,. \end{displaymath} This is the intertwining condition on $\tilde \phi$. Conversely, given $\tilde \phi$ satisfying this for all values of the variables, then running the argument backwards shows that its hom-[[adjunct]] $\phi$ satisfies its required intertwining condition. \end{proof} The following is immediate but conceptually important: \begin{prop} \label{}\hypertarget{}{} The [[invariants]] of the conjugation action on $[S_1,S_2]$ is the set of action [[homomorphisms]]/[[intertwiners]]. \end{prop} Hence the inclusion of invariants into the conjugation action gives the inclusion of the external [[hom set]] of the category of $G$-actions into the set underlying the [[internal hom]] \begin{displaymath} G Act(\rho_1,\rho_2)\hookrightarrow [\rho_1,\rho_2] \,. \end{displaymath} \begin{example} \label{}\hypertarget{}{} Given any $X$ with its canonical action of its [[automorphism group]] $Aut(X)$, regard any $Y$ as equipped with the trivial $Aut(Y)$-action. Then the [[conjugation action]], def. \ref{ConjugationActionForDiscrete1Groups}, on $[X,Y]$ is the action by precomposition with automorphisms of $X$. \end{example} \hypertarget{associated_bundles}{}\paragraph*{{Associated bundles}}\label{associated_bundles} At \emph{[[geometry of physics -- principal bundles]]} in the section \emph{\href{geometry%20of%20physics%20--%20principal%20bundles#PrincipalBundlesViaSmoothGroupoids}{Smooth principal bundles via smooth groupoids}} is discussed how smooth [[principal bundles]] for a [[Lie group]] $G$ over a [[smooth manifold]] $X$ are equivalently the [[homotopy fibers]] of morphisms of [[smooth groupoids]] ([[smooth stacks]]) of the form \begin{displaymath} X \stackrel{}{\longrightarrow} \mathbf{B}G \,. \end{displaymath} Now given an [[action]] $\rho$ of $G$ on some [[smooth manifold]] $V$, and regardiing this action via its [[action groupoid]] projection $p_\rho \colon V//G \to \mathbf{B}G$ as discussed \hyperlink{ActionsOf1Groups}{above}, then we may consider these two morphisms into $\mathbf{B}G$ jointly \begin{displaymath} \itexarray{ && V//G \\ && \downarrow^{\mathrlap{p_\rho}} \\ X &\stackrel{g}{\longrightarrow}& \mathbf{B}G } \end{displaymath} and so it is natural to construct their [[homotopy fiber product]]. We now discuss that this is equivalently the [[associated bundle]] which is associated to the principal bundle $P \to X$ via the action $\rho$. \begin{prop} \label{Associated1BundleAsPullbackOfActionGroupoid}\hypertarget{Associated1BundleAsPullbackOfActionGroupoid}{} For $G$ a [[smooth group]] (e.g. a [[Lie group]]), $X$ a [[smooth manifold]], $P \to X$ a smooth $G$-[[principal bundle]] over $X$ and $\rho$ a smooth [[action]] of $G$ on some [[smooth manifold]] $V$, then the [[associated bundle|associated]] $V$-[[fiber bundle]] $P \times_G V\to X$ is equivalently (regarded as a [[smooth groupoid]]) the [[homotopy pullback]] of the [[action groupoid]]-projection $p_\rho \colon V//G \to \mathbf{B}G$ along a morphism $g \colon X\to\mathgbf{B}G$ which [[modulating morphism|modulates]] $P$ \begin{displaymath} \itexarray{ P\times_G V &\longrightarrow& V//G \\ \downarrow && \downarrow^{\mathrlap{p_\rho}} \\ X &\stackrel{g}{\longrightarrow}& \mathbf{B}G } \,. \end{displaymath} \end{prop} \begin{proof} By the discussion at \emph{[[geometry of physics -- principal bundles]]} in the section \emph{\href{geometry%20of%20physics%20--%20principal%20bundles#PrincipalBundlesViaSmoothGroupoids}{Smooth principal bundles via smooth groupoids}}, the morphism $g$ of smooth groupoids is presented by a morphism of pre-smooth groupoids after choosing an [[open cover]] $\{U_i \to X\}$ over wich $P$ trivialize and choosing a trivialization, by the [[zig-zag]] \begin{displaymath} \itexarray{ C(\{U_i\})_\bullet &\stackrel{g_\bullet}{\longrightarrow}& (\mathbf{B}G)_\bullet \\ \downarrow^{\mathrlap{\simeq_{lwe}}} \\ X } \end{displaymath} where the top morphism is the [[Cech cohomology|Cech cocycle]] of the given local trivialization regarded as a morphism out of the [[Cech groupoid]] of the given cover. Moreover, by prop. \ref{MapFromActionGroupoidOnSetBackToBG} the morphism $(p_\rho)_\bullet$ is a global fibration of pre-smooth groupoids, hence, by the discussion at \emph{[[geometry of physics -- smooth homotopy types]]}, the homotopy pullback in question is equivalently computed as the ordinary pullback of pre-smooth groupoids of $(p_\rho)_\bullet$ along this $g_\bullet$ \begin{displaymath} \itexarray{ C(\{U_i\})_\bullet \underset{(\mathbf{B}G)_\bullet}{\times} (V//G)_\bullet &\longrightarrow& (V//G)_\bullet \\ \downarrow && \downarrow^{\mathrlap{(p_\rho)_\bullet}} \\ C(\{U_i\})_\bullet &\stackrel{g_\bullet}{\longrightarrow}& (\mathbf{B}G)_\bullet \\ \downarrow^{\mathrlap{\simeq_{lwe}}} \\ X } \,. \end{displaymath} This pullback is computed componentwise. Hence it is the pre-smooth groupoid whose morphisms are pairs consisting of a morphism $(x,i)\to (x,j)$ in the Cech groupoid as well as a morphism $s \stackrel{g}{\to} \rho(s)(g)$ in the action groupoid, such that the group label $g$ of the latter equals the cocycle $g_{i j}(x)$ of the cocycle on the former. Schematically: \begin{displaymath} C(\{U_i\})_\bullet \underset{(\mathbf{B}G)_\bullet}{\times} (V//G)_\bullet = \left\{ ((x,i),s) \stackrel{g_{i j}(x)}{\longrightarrow} ((x,j),\rho(s)(g)) \right\} \,. \end{displaymath} This means that the pullback groupoid has at most one morphism between every ordered pair of objects. Accordingly this groupoid is [[equivalence of groupoids]] equivalent to the [[quotient]] of its space of objects by the [[equivalence relation]] induced by its morphisms: \begin{displaymath} \cdots \simeq \left( \underset{i}{\coprod} U_i \times V \right)/_\sim \,. \end{displaymath} This is a traditional description of the [[associated bundle]] in question. \end{proof} \hypertarget{invariants_and_sections}{}\paragraph*{{Invariants and sections}}\label{invariants_and_sections} One advantage of the perspective on representations via action groupoids is that it gives a good formulation of the [[invariants]] and the [[coinvariants]] of actions. The invariants are the \emph{[[sections]]} of the action groupoid projection, while the coivariants in fact are the action groupoid itself. \begin{prop} \label{}\hypertarget{}{} For $G$ a [[discrete group]], $\rho$ a $G$-[[action]] on some set $S$, then the set of [[invariants]] of that action is equivalent to the groupoid of [[sections]] of the [[action groupoid]] projection of prop. \ref{MapFromActionGroupoidOnSetBackToBG}, corresponding to the action via prop. \ref{EquivalenceOfPermutationRepresentationsWithActionGroupodsInSlice}. \end{prop} \begin{proof} The sections in question are diagrams in [[Grpd]] of the form \begin{displaymath} \itexarray{ \mathbf{B}G && \stackrel{\sigma}{\longrightarrow} && S//G \\ & {}_{\mathllap{id}}\searrow &\swArrow_{\mathrlap{\simeq}}& \swarrow_{\mathrlap{p_\phi}} \\ && \mathbf{B}G } \,, \end{displaymath} hence the groupoid which they form is equivalently the [[hom-groupoid]] \begin{displaymath} Grpd_{/\mathbf{B}G}(id_{\mathbf{B}G}, p_\rho) \in Grpd \end{displaymath} in the [[slice (infinity,1)-category|slice]] of [[Grpd]] over $\mathbf{B}G$. As in the proof of prop. \ref{IntertwinersOfPermutationActionAsSliceHoms}, with the fibrant presentation $(p_\rho)_\bullet$ of prop. \ref{MapFromActionGroupoidOnSetBackToBG}, this is equivalently given by strictly commuting diagrams of the form \begin{displaymath} \itexarray{ (\mathbf{B}G)_\bullet && \stackrel{\sigma_\bullet}{\longrightarrow} && (S//G)_\bullet \\ & {}_{\mathllap{id_\bullet}}\searrow &=& \swarrow_{\mathrlap{(p_\phi)_\bullet}} \\ && (\mathbf{B}G)_\bullet } \,. \end{displaymath} These $\sigma$ now are manifestly functors that are the identiy on the group labels of the morphisms \begin{displaymath} \sigma_\bullet \;\colon\; \left( \itexarray{ \ast \\ \downarrow^{\mathrlap{g}} \\ \ast } \right) \;\; \mapsto \;\; \left( \itexarray{ \sigma(\ast) \\ \downarrow^{\mathrlap{g}} \\ \sigma(\ast) & = \rho(\sigma(\ast)(g)) } \right) \,. \end{displaymath} This shows that they pick precisely those elements $\sigma(\ast) \in S$ which are fixed by the $G$-action $\rho$. Moreover, since these functors are identity on the group labels, there are no non-trivial [[natural isomorphisms]] between them, and hence the groupoid of sections is indeed a set, the set of invariant elements. \end{proof} More generally, we may consider sections of these groupoid projections after pulling them back along some cocycle: \begin{prop} \label{}\hypertarget{}{} Given an [[associated bundle]] $P \times_G V\to X$ [[modulating morphism|modulated]], as in prop. \ref{Associated1BundleAsPullbackOfActionGroupoid}, by a morphism of [[smooth groupoids]] of the form $g \colon X \longrightarrow \mathbf{B}G$, then its set of [[sections]] is equivalently the groupoid of diagrams \begin{displaymath} \itexarray{ X && \stackrel{\sigma}{\longrightarrow} && S//G \\ & {}_{\mathllap{g}}\searrow &\swArrow_{\mathrlap{\simeq}}& \swarrow_{\mathrlap{p_\phi}} \\ && \mathbf{B}G } \,, \end{displaymath} hence the groupoid of sections is equivalently the slice [[hom-groupoid]] \begin{displaymath} \Gamma_X(P\times_G V) \simeq Grpd_{/\mathbf{B}G}(g, p_\rho) \,. \end{displaymath} \end{prop} \begin{proof} By the defining [[universal property]] of the [[homotopy pullback]] in prop. \ref{Associated1BundleAsPullbackOfActionGroupoid}. \end{proof} \begin{remark} \label{}\hypertarget{}{} Taken together this means that [[invariants]] of group actions are equivalently the sections of the corresponding [[universal principal bundle|universal]] [[associated bundle]]. \end{remark} \hypertarget{stabilizer_groups}{}\paragraph*{{Stabilizer groups}}\label{stabilizer_groups} Given an ordinary [[discrete group]] $G$ and an [[action]] $\rho \colob G \times V \longrightarrow V$ of the group on some [[set]] $V$, then for $x \in V$ any element, the [[stabilizer group]] \begin{displaymath} Stab_x(V) \hookrightarrow G \end{displaymath} is the [[subgroup]] of $G$ consisting of those group elements under whose action the element $v$ does not change (is ``stable''): \begin{displaymath} Stab_G(x) = \left\{ g \in G \;|\; \rho(g)(v) = v \right\} \,. \end{displaymath} We observe that this has the following intrinsic reformulation. Write again \begin{displaymath} \itexarray{ V &\stackrel{i}{\longrightarrow}& V//G \\ && \downarrow^{\mathrlap{p_\rho}} \\ && \mathbf{B}G } \end{displaymath} for the [[action groupoid]] [[homotopy fiber sequence]] that corresponds to $\rho$ via prop. \ref{EquivalenceOfPermutationRepresentationsWithActionGroupodsInSlice}. \begin{prop} \label{OrdinaryStabilizer}\hypertarget{OrdinaryStabilizer}{} The stabilizer group of $x$ under $G$ acting on $V$ is equivalently the [[looping]] of the [[action groupoid]] at the point $i(x)$: \begin{displaymath} Stab_G(x) \simeq \Omega_{i(x)} (V//G) \end{displaymath} \end{prop} \begin{proof} Since $V//G$ is a [[1-groupoid]], the [[loop space object]] $\Omega_{i(x)} (V//G)$ is simply the [[automorphism group]] of $x$ regarded as an object in the action groupoid, hence the group of [[morphisms]] in $(V//G)_\bullet$ from $x$ to $x$. Comparison with def. \ref{Action1Groupoid} shows that these morphisms are precisely those labeled by elements $g \in G$ for which $\rho(g)(x) = x$. \end{proof} \hypertarget{representations_of_1groups}{}\paragraph*{{$\infty$-Representations of 1-groups}}\label{representations_of_1groups} The \hyperlink{1RepresentationsOf1Groups}{above} perspective on ordinary representations of ordinary groups on sets via their [[action groupoid]] projection has the advantage that it immediately generalizes to a definition where 1-groups act on more general [[homotopy types]] up to [[coherence|coherent]] [[homotopy]], hence to \emph{[[infinity-representations]]} or \emph{[[infinity-actions]]}. \begin{defn} \label{}\hypertarget{}{} Given a [[discrete group]] $G$ and a [[Kan complex]] $V_\bullet$, then an \emph{[[infinity-representation]]} or \emph{[[infinity-action]]} of $G$ on $V$ is another [[Kan complex]], to be denoted $(V//G)_\bullet$, equipped with a simplicial map $(p_\rho) \colon (V//G)_\bullet \longrightarrow N(\mathbf{B}G)_\bullet$ to the [[nerve]] of $(\mathbf{B}G_\bullet)$, such that the [[homotopy fiber]] of that map is [[weak homotopy equivalence|weakly homotopy equivalent]] to $V_\bullet$. \end{defn} \hypertarget{examples_of_representations}{}\paragraph*{{Examples of $\infty$-Representations}}\label{examples_of_representations} Given an [[abelian group]] $A$ and $n \in \mathbb{N}$, write $(\mathbf{B}^n A)_\bullet$ for the [[Kan complex]] which is the image under the [[Dold-Kan correspondence]] of the [[chain complex]] that is concentrated on $A$ in degree $n$. Then for $G$ a [[discrete group]], the [[mapping complex]] \begin{displaymath} [\mathbf{B}G,\mathbf{B}^n A] \in KanCplx \end{displaymath} is the [[infinity-groupoid]] whose [[objects]] are the degree-$n$ [[group cohomology|group cocycles]] on $G$ with [[coefficients]] in $A$ (regarded as a $G$-[[module]] with trivial [[action]]), whose [[morphisms]] are the [[coboundaries]] between these cocycles, and whose higher morphisms are higher order coboundaries-of-coboundaries. Being a [[mapping space]], this naturally carries a precomposition action by the [[automorphism infinity-group]] of $\mathbf{B}G$, which is also known as the [[automorphism 2-group]] of $G$. Restricting this to \emph{pointed} automorphisms is is the 1-group $Aut_{Grp}(G)$ of invertible group homomorphisms of $G$. \hypertarget{semantic_layer}{}\subsubsection*{{Semantic Layer}}\label{semantic_layer} We now consider any [[(∞,1)-topos]] $\mathbf{H}$ and formulate the group actions and their associated bundles in [[general abstract|general abstractly]] here. By the discussion at \emph{[[geometry of physics -- groups]]}, [[group objects in an (∞,1)-category]] are equivalently pointed connected objects which we write $(\ast\to\mathbf{B}G)\in \mathbf{H}^{\ast/}$, the group itself being the [[loop space object]] \begin{displaymath} G \simeq \Omega \mathbf{B}G \end{displaymath} formed at the given base point. \hypertarget{actions_2}{}\paragraph*{{$\infty$-Actions}}\label{actions_2} In view of this, the characterization of ordinary group action according to prop. \ref{EquivalenceOfPermutationRepresentationsWithActionGroupodsInSlice} has an immediate generalization to [[∞-groups]] in any [[(∞,1)-topos]] \begin{defn} \label{InfinityAction}\hypertarget{InfinityAction}{} Given an [[∞-group]] $G \in \mathbf{H}$ and any object $V \in \mathbf{H}$, then an \emph{[[∞-action]]} $\rho$ of $G$ on $V$ is a [[homotopy fiber sequence]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ V &\to& V\sslash G \\ && \downarrow^{\mathrlap{p_\rho}} \\ && \mathbf{B}G } \,. \end{displaymath} The object $V/G$ defined thereby we call the [[homotopy quotient]] of $V$ by $G$ via this action. \end{defn} \hypertarget{associated_bundles_2}{}\paragraph*{{Associated $\infty$-bundles}}\label{associated_bundles_2} \begin{itemize}% \item [[associated infinity-bundle]] \end{itemize} \begin{displaymath} \itexarray{ E &\to& V\sslash G \\ \downarrow &pb& \downarrow \\ \tilde X &\to& \mathbf{B}G \\ \downarrow^{\mathrlap{\simeq}} \\ X } \end{displaymath} \begin{itemize}% \item [[section]] \end{itemize} \begin{displaymath} \itexarray{ X &&\stackrel{\sigma}{\to}&& V \sslash G \\ & \searrow &\swArrow_{\simeq}& \swarrow \\ && \mathbf{B}G } \end{displaymath} \hypertarget{stabilizer_groups_2}{}\paragraph*{{Stabilizer $\infty$-Groups}}\label{stabilizer_groups_2} We had seen above in prop. \ref{OrdinaryStabilizer} that the traditional concept of stabilizer groups of group actions is equivalent to groups of loops in the [[action groupoid]] of the given action. This equivalent reformulation has an immediate generalization to [[∞-actions]], def. \ref{InfinityAction}. For $\mathbf{H}$ an [[(∞,1)-topos]], $G\in \mathbf{H}$ an object equipped with [[∞-group]] structure, hence with a [[delooping]] $\mathbf{B}$G, and for $\rho$ an [[∞-action]] of $G$ on some $V$, exhibited by a [[homotopy fiber sequence]] of the form \begin{displaymath} \itexarray{ V &\stackrel{i}{\longrightarrow}& V/G \\ && \downarrow^{\mathrlap{p_\rho}} \\ && \mathbf{B}G } \,. \end{displaymath} \begin{defn} \label{StabilizerInInfinityTopos}\hypertarget{StabilizerInInfinityTopos}{} Given a [[global element]] of $V$ \begin{displaymath} x \colon \ast \to X \end{displaymath} then the \textbf{stabilizer $\infty$-group} $Stab_\rho(x)$ of the $G$-action at $x$ is the [[loop space object]] \begin{displaymath} Stab_\rho(x) \coloneqq \Omega_{i(x)} (X/G) \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} Equivalently, def. \ref{StabilizerInInfinityTopos}, gives the [[loop space object]] of the [[1-image]] $\mathbf{B}Stab_\rho(x)$ of the morphism \begin{displaymath} \ast \stackrel{x}{\to} X \to X/G \,. \end{displaymath} As such the [[delooping]] of the stabilizer $\infty$-group sits in a [[1-epimorphism]]/[[1-monomorphism]] factorization $\ast \to \mathbf{B}Stab_\rho(x) \hookrightarrow X/G$ which combines with the homotopy fiber sequence of prop. \ref{InfinityAction} to a diagram of the form \begin{displaymath} \itexarray{ \ast &\stackrel{x}{\longrightarrow}& X &\stackrel{}{\longrightarrow}& X/G \\ \downarrow^{\mathrlap{epi}} && & \nearrow_{\mathrlap{mono}} & \downarrow \\ \mathbf{B} Stab_\rho(x) &=& \mathbf{B} Stab_\rho(x) &\longrightarrow& \mathbf{B}G } \,. \end{displaymath} In particular there is hence a canonical homomorphism of $\infty$-groups \begin{displaymath} Stab_\rho(x) \longrightarrow G \,. \end{displaymath} However, in contrast to the classical situation, this morphism is not in general a monomorphism anymore, hence the stabilizer $Stab_\rho(x)$ is not a \emph{sub}-group of $G$ in general. \end{defn} \hypertarget{syntactic_layer}{}\subsubsection*{{Syntactic Layer}}\label{syntactic_layer} \hypertarget{the_context_of_a_pointed_connected_type_representation_theory}{}\paragraph*{{The context of a pointed connected type: representation theory}}\label{the_context_of_a_pointed_connected_type_representation_theory} (\ldots{}) \hypertarget{dependent_product_over_a_pointed_connected_type_invariants}{}\paragraph*{{Dependent product over a pointed connected type: invariants}}\label{dependent_product_over_a_pointed_connected_type_invariants} (\ldots{}) \hypertarget{dependent_sum_over_a_pointed_connected_type_quotients}{}\paragraph*{{Dependent sum over a pointed connected type: quotients}}\label{dependent_sum_over_a_pointed_connected_type_quotients} (\ldots{}) \end{document}