\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{geometry of physics -- supergeometry and superphysics} \begin{quote}% this entry is one chapter of ``[[geometry of physics]]'' previous chapter: \emph{[[geometry of physics -- manifolds and orbifolds|manifolds and orbifolds]]} next chapter: \emph{[[geometry of physics -- BPS charges|BPS charges]]} Presently this entry is under construction. It is being incrementally expanded as this lecture series progresses: \emph{[[schreiber:From the Superpoint to T-Folds]]}. \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Superalgebra}{Superalgebra}\dotfill \pageref*{Superalgebra} \linebreak \noindent\hyperlink{Supergeometry}{Supergeometry}\dotfill \pageref*{Supergeometry} \linebreak \noindent\hyperlink{spacetime_supersymmetry}{Spacetime supersymmetry}\dotfill \pageref*{spacetime_supersymmetry} \linebreak \noindent\hyperlink{fundamental_super_branes}{Fundamental super $p$-branes}\dotfill \pageref*{fundamental_super_branes} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{GeneralReading}{General accounts}\dotfill \pageref*{GeneralReading} \linebreak \noindent\hyperlink{MoreDetails}{More specialized literature}\dotfill \pageref*{MoreDetails} \linebreak \noindent\hyperlink{ReferencesHigherSuperCartan}{Higher super Cartan geometry}\dotfill \pageref*{ReferencesHigherSuperCartan} \linebreak In [[nLab:Klein geometry]] and [[nLab:Cartan geometry]] the fundamental geometric concept is the [[nLab:symmetry group]] $G$ of the local model [[nLab:space]], which is then recovered as some [[nLab:coset space]] $G/H$. These symmetry groups $G$ are reflected in their [[nLab:categories of representations]] $Rep(G)$, which are certain nice [[nLab:tensor categories]]. In terms of [[nLab:physics]] via [[nLab:Wigner classification]], the [[nLab:irreducible objects]] in $Rep(G)$ label the possible [[nLab:fundamental particle]] species on the [[nLab:spacetime]] $G/H$. Hence if we regard the [[nLab:tensor category]] $Rep(G)$ as the actual fundamental concept, then the natural question is that of \emph{[[nLab:Tannaka duality|Tannaka reconstruction]]}: Given any nice [[nLab:tensor category]], is it [[nLab:equivalence of categories|equivalent]] to $Rep(G)$ for some symmetry group $G$? For [[nLab:rigid monoidal category|rigid]] [[nLab:tensor categories]] in [[nLab:characteristic zero]] subject only to a mild size constraint this is answered by \textbf{[[nLab:Deligne's theorem on tensor categories]]}: all of them are, but only if we allow $G$ to be a ``[[nLab:supergroup]]''. This we discuss in the first section \hyperlink{Superalgebra}{below}. \hypertarget{Superalgebra}{}\subsection*{{Superalgebra}}\label{Superalgebra} this section is at \emph{[[geometry of physics -- superalgebra]]} \hypertarget{Supergeometry}{}\subsection*{{Supergeometry}}\label{Supergeometry} this section is at \emph{[[geometry of physics -- supergeometry]]} \hypertarget{spacetime_supersymmetry}{}\subsection*{{Spacetime supersymmetry}}\label{spacetime_supersymmetry} this section is at \emph{[[geometry of physics -- supersymmetry]]} \hypertarget{fundamental_super_branes}{}\subsection*{{Fundamental super $p$-branes}}\label{fundamental_super_branes} this section is at \emph{[[geometry of physics -- fundamental super p-branes]]} \hypertarget{references}{}\subsection*{{References}}\label{references} The following first mentions \begin{itemize}% \item \hyperlink{GeneralReading}{General accounts} \end{itemize} that might usefully be held on to during the seminar. Then I list \begin{itemize}% \item \hyperlink{MoreDetails}{Special literature} \end{itemize} with refernces to original results and to reviews of these. Then I list pointers to my own work with collaborators on \begin{itemize}% \item \hyperlink{ReferencesHigherSuperCartan}{Higher super Cartan geometry} \end{itemize} \hypertarget{GeneralReading}{}\subsubsection*{{General accounts}}\label{GeneralReading} An excellent general textbook for our purposes is \begin{itemize}% \item [[nLab:Leonardo Castellani]], [[nLab:Riccardo D'Auria]], [[nLab:Pietro Fré]], \emph{[[nLab:Supergravity and Superstrings - A Geometric Perspective]]}, World Scientific (1991) \end{itemize} This is written by physicists in physics style, but the development is careful and thorough, and the ``geometric perspective'' in the title is nothing but the perspective of higher [[nLab:super Cartan geometry]] in slight disguise. See also at \emph{[[nLab:D'Auria-Fré formulation of supergravity]]}. Lecture notes closely related to the seminar are in \begin{itemize}% \item [[nLab:Urs Schreiber]], \emph{[[schreiber:Structure Theory for Higher WZW Terms]]}, lectures at \emph{\href{http://www.esi.ac.at/activities/events/2015/higher-structures-in-string-theory-and-quantum-field-theory}{Higher Structures in String Theory and Quantum Field Theory}}, ESI Vienna, November 30-December 4, 2015 \end{itemize} \hypertarget{MoreDetails}{}\subsubsection*{{More specialized literature}}\label{MoreDetails} [[nLab:Deligne's theorem on tensor categories]] is due to \begin{itemize}% \item [[nLab:Pierre Deligne]], \emph{Cat\'e{}gorie Tensorielle}, Moscow Math. Journal 2 (2002) no. 2, 227-248. (\href{https://www.math.ias.edu/files/deligne/Tensorielles.pdf}{pdf}) \end{itemize} building on his general work on [[nLab:Tannakian categories]] \begin{itemize}% \item [[nLab:Pierre Deligne]], \emph{[[nLab:Catégories Tannakiennes]]}, Grothendieck Festschrift, vol. II, Birkh\"a{}user Progress in Math. 87 (1990) pp.111-195. (\href{https://publications.ias.edu/sites/default/files/60_categoriestanna.pdf}{pdf}) \end{itemize} A brief survey is in \begin{itemize}% \item [[nLab:Victor Ostrik]], \emph{Tensor categories (after P. Deligne)} (\href{http://arxiv.org/abs/math/0401347}{arXiv:math/0401347}) \end{itemize} and a more comprehensive texbook account is in chapter 9.11 of \begin{itemize}% \item [[nLab:Pavel Etingof]], Shlomo Gelaki, Dmitri Nikshych, [[nLab:Victor Ostrik]], \emph{Tensor categories}, Mathematical Surveys and Monographs, Volume 205, American Mathematical Society, 2015 (\href{http://www-math.mit.edu/~etingof/egnobookfinal.pdf }{pdf}) \end{itemize} The observation that [[nLab:supergeometry]] is naturally regarded as ordinary geometry inside the [[nLab:sheaf topos]] over [[nLab:superpoints]] is due to \begin{itemize}% \item [[nLab:Albert Schwarz]], \emph{On the definition of superspace}, Teoret. Mat. Fiz. (1984) Volume 60, Number 1, Pages 37--42, (\href{http://www.mathnet.ru/links/b12306f831b8c37d32d5ba8511d60c93/tmf5111.pdf}{russian original pdf}) \item Anatoly Konechny, [[nLab:Albert Schwarz]], \emph{On $(k \oplus l|q)$-dimensional supermanifolds} in \emph{Supersymmetry and Quantum Field Theory} ([[Dmitry Volkov]] memorial volume) Springer-Verlag, 1998, Lecture Notes in Physics, 509 , J. Wess and V. Akulov (editors)(\href{http://arxiv.org/abs/hep-th/9706003}{arXiv:hep-th/9706003}) \emph{Theory of $(k \oplus l|q)$-dimensional supermanifolds} Sel. math., New ser. 6 (2000) 471 - 486 \end{itemize} A nice account is in \begin{itemize}% \item [[nLab:Christoph Sachse]], \emph{A Categorical Formulation of Superalgebra and Supergeometry} (\href{http://arxiv.org/abs/0802.4067}{arXiv:0802.4067}) \end{itemize} Useful discussion of [[nLab:Majorana spinors]] and the induced [[nLab:supersymmetry]] algebras includes \begin{itemize}% \item \hyperlink{II.7.3}{CDF, II.7.3} \item [[nLab:José Figueroa-O'Farrill]], \emph{Majorana spinors} (\href{http://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/Majorana.pdf}{pdf}) \end{itemize} The close relation between [[nLab:supersymmetry and division algebras]] was first observed in \begin{itemize}% \item [[Taichiro Kugo]], [[Paul Townsend]], \emph{Supersymmetry and the division algebras}, Nuclear Physics B, Volume 221, Issue 2 (1983) p. 357-380. (\href{http://inspirehep.net/record/181889}{spires}, \href{http://cds.cern.ch/record/140183/files/198301032.pdf}{pdf}) \end{itemize} A clean survey is in \begin{itemize}% \item [[John Baez]], [[John Huerta]], \emph{Division algebras and supersymmetry I}, in R. Doran, G. Friedman, [[nLab:Jonathan Rosenberg]](eds.) \emph{Superstrings, Geometry, Topology, and $C^\ast$-algebras}, Proc. Symp. Pure Math. 81, AMS, Providence, 2010, pp. 65-80 (\href{http://arxiv.org/abs/0909.0551}{arXiv:0909.0551}) \end{itemize} and the discussion of the spinor bilinear pairings from this perspective is in \begin{itemize}% \item [[John Baez]], [[John Huerta]], \emph{Division algebras and supersymmetry II}, Adv. Math. Theor. Phys. 15 (2011), 1373-1410 (\href{http://arxiv.org/abs/1003.3436}{arXiv:1003.34360}) \end{itemize} The seminal analysis of [[nLab:torsion of G-structures]] is due to \begin{itemize}% \item [[Victor Guillemin]], \emph{The integrability problem for $G$-structures}, Trans. Amer. Math. Soc. 116 (1965), 544--560. (\href{http://www.jstor.org/stable/1994134}{JSTOR}) \end{itemize} Discussion of [[nLab:torsion of G-structures]] in the context of [[nLab:supergeometry]] ([[nLab:supertorsion]]) is in \begin{itemize}% \item [[nLab:John Lott]], \emph{The Geometry of Supergravity Torsion Constraints} Comm. Math. Phys. 133 (1990), 563--615, (exposition in \href{http://arxiv.org/abs/math/0108125}{arXiv:0108125}) \end{itemize} An elegant construction of [[nLab:11-dimensional supergravity]], right in the spirit of [[nLab:super Cartan geometry]], is due to \begin{itemize}% \item [[nLab:Riccardo D'Auria]], [[nLab:Pietro Fré]]; \emph{Geometric Superravity in D=11 and its hidden supergroup}, Nuclear Physics B201 (1982) 101-140 (\href{https://ncatlab.org/nlab/files/GeometricSupergravity.pdf}{pdf}) \end{itemize} This is the main original result on which the [[nLab:D'Auria-Fré formulation of supergravity]] is based, as laid out in \hyperlink{CDF}{CDF}. The observation that the [[nLab:equations of motion]] of bosonic solutions of [[nLab:11-dimensional supergravity]] are equivalent simply to vanishing of the [[nLab:supertorsion]] is due to \begin{itemize}% \item A. Candiello, K. Lechner, \emph{Duality in Supergravity Theories}, Nucl.Phys. B412 (1994) 479-501 (\href{http://arxiv.org/abs/hep-th/9309143}{arXiv:hep-th/9309143}) \item [[nLab:Paul Howe]], \emph{Weyl Superspace}, Physics Letters B Volume 415, Issue 2, 11 December 1997, Pages 149--155 (\href{http://arxiv.org/abs/hep-th/9707184}{arXiv:hep-th/9707184}) \end{itemize} Discussion of [[nLab:Fierz identities]] includes \begin{itemize}% \item \hyperlink{CDF}{CDF, II.8} \end{itemize} The classification of the invariant super Lie algebra cocycles on super-Minkowski spacetime, hence that of [[nLab:super p-branes]] without gauge fields on their worldvolume, is due to \begin{itemize}% \item Anna Ach\'u{}carro, [[nLab:Jonathan Evans]], [[nLab:Paul Townsend]], [[nLab:David Wiltshire]], \emph{Super $p$-Branes}, Phys. Lett. B \textbf{198} (1987) 441 (\href{http://inspirehep.net/record/22286?ln=en}{spire}) \end{itemize} The extension of this classification to [[nLab:D-branes]] and to the [[nLab:M5-brane]] using [[nLab:extended super Minkowski spacetime]] is due to \begin{itemize}% \item C. Chryssomalakos, [[nLab:José de Azcárraga]], J. M. Izquierdo and C. P\'e{}rez Bueno, \emph{The geometry of branes and extended superspaces}, Nuclear Physics B Volume 567, Issues 1--2, 14 February 2000, Pages 293--330 (\href{http://arxiv.org/abs/hep-th/9904137}{arXiv:hep-th/9904137}) \item Makoto Sakaguchi, \emph{IIB-Branes and New Spacetime Superalgebras}, JHEP 0004 (2000) 019 (\href{https://arxiv.org/abs/hep-th/9909143}{arXiv:hep-th/9909143}) \end{itemize} The M5-brane cocycle on the ``M2-brane extended super-Minkowski spacetime'' that appears here has in fact been observed, as a cocycle, all the way back in \hyperlink{DAuriaFre82}{D'Auria-Fr\'e{} 82}. But there it was seen just as a means for constructing [[nlab:11-dimensional supergravity]]. That it indeed gives the [[nLab:higher WZW term]] in the [[nLab:Green-Schwarz action functional|Green-Schwarz type action functional]] that defines the fundamental [[nLab:M5-brane]] has been argued in \begin{itemize}% \item [[nLab:Igor Bandos]], [[nLab:Kurt Lechner]], Alexei Nurmagambetov, [[nLab:Paolo Pasti]], [[nLab:Dmitri Sorokin]], Mario Tonin, \emph{Covariant Action for the Super-Five-Brane of M-Theory}, Phys.Rev.Lett. 78 (1997) 4332-4334 (\href{http://arxiv.org/abs/hep-th/9701149}{arXiv:hep-th/9701149}) \end{itemize} The observation that [[nLab:super p-branes]] on curved [[nLab:super spacetimes]] require [[nLab:definite globalization of WZW term|definite globalization]] of super Lie algebra cocycles from Minkowski spacetime over the supermanifold is due to \begin{itemize}% \item [[nLab:Eric Bergshoeff]], [[nLab:Ergin Sezgin]], [[nLab:Paul Townsend]], \emph{Superstring actions in $D = 3, 4, 6, 10$ curved superspace}, Phys.Lett., B169, 191, (1986) (\href{http://inspirehep.net/record/223138/?ln=en}{spire}) \item [[nLab:Eric Bergshoeff]], [[nLab:Ergin Sezgin]], [[nLab:Paul Townsend]], \emph{Supermembranes and eleven dimensional supergravity}, Phys.Lett. B189 (1987) 75-78, In [[nLab:Mike Duff]], (ed.), \emph{[[nLab:The World in Eleven Dimensions]]} 69-72 (\href{http://streaming.ictp.trieste.it/preprints/P/87/010.pdf}{pdf}, \href{http://inspirehep.net/record/248230?ln=en}{spire}) \end{itemize} The formulation of [[nLab:topological T-duality]] is due to \begin{itemize}% \item [[nLab:Peter Bouwknegt]], [[nLab:Jarah Evslin]], [[nLab:Varghese Mathai]], \emph{T-Duality: Topology Change from H-flux}, Commun.Math.Phys.249:383-415,2004 (\href{http://arxiv.org/abs/hep-th/0306062}{hep-th/0306062}) \end{itemize} and in an alternative form due to \begin{itemize}% \item [[nLab:Ulrich Bunke]], P. Rumpf, [[nLab:Thomas Schick]], \emph{The topology of $T$-duality for $T^n$-bundles}, Rev. Math. Phys. 18, 1103 (2006). (\href{http://arxiv.org/abs/math.GT/0501487}{arXiv:math.GT/0501487}) \end{itemize} The suggestion that there ought to be ``[[nLab:T-folds]]'' or ``[[nLab:double field theory|doubled geometry]]'' is due to \begin{itemize}% \item [[nLab:Chris Hull]], \emph{A Geometry for Non-Geometric String Backgrounds}, JHEP0510:065,2005 (\href{http://arxiv.org/abs/hep-th/0406102}{arXiv:hep-th/0406102}) \item [[nLab:Chris Hull]], \emph{Doubled geometry and T-folds} JHEP0707:080,2007 (\href{http://arxiv.org/abs/hep-th/0605149}{arXiv:hep-th/0605149}) \end{itemize} The mathematical formalization of this idea in terms of [[nLab:principal 2-bundles]] for the [[nLab:T-duality 2-group]] was claimed in \begin{itemize}% \item [[nLab:Thomas Nikolaus]], \emph{T-Duality in K-theory and elliptic cohomology}, talk at \emph{String Geometry Network Meeting}, Feb 2014, ESI Vienna (\href{http://www.ingvet.kau.se/juerfuch/conf/esi14/esi14_34.html}{website}) \end{itemize} \hypertarget{ReferencesHigherSuperCartan}{}\subsubsection*{{Higher super Cartan geometry}}\label{ReferencesHigherSuperCartan} The following articles develop the higher super Cartan geometry that we give an exposition of in the second part of the seminar. The mathematical foundation of higher supergeometry: \begin{itemize}% \item [[nLab:Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]}, Thesis, (\href{http://arxiv.org/abs/1310.7930v1}{v1 arXiv:1310.7930}, \href{https://dl.dropboxusercontent.com/u/12630719/dcct.pdf}{v2}) \end{itemize} The general idea of [[schreiber:The brane bouquet]] and the general construction of [[nLab:higher WZW terms]] from higher $L_\infty$-cocycles: \begin{itemize}% \item [[nLab:Domenico Fiorenza]], [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:The brane bouquet|Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields]]} International Journal of Geometric Methods in Modern Physics Volume 12, Issue 02 (2015) 1550018, (\href{http://arxiv.org/abs/1308.5264}{arXiv:1308.5264}) \end{itemize} The homotopy-[[nLab:descent]] of the [[nLab:M5-brane]] cocycle and of the type IIA [[nLab:D-brane]] cocycles: \begin{itemize}% \item [[nLab:Domenico Fiorenza]], [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:Rational sphere valued supercocycles in M-theory]]}, to appear in Journal of Geometry and Physics (\href{http://arxiv.org/abs/1606.03206}{arXiv:1606.03206}) \end{itemize} The derivation of supersymmetric [[nLab:topological T-duality]], rationally, and of the higher super Cartan geometry for [[nLab:super T-folds]]: \begin{itemize}% \item [[nLab:Domenico Fiorenza]], [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:T-Duality from super Lie n-algebra cocycles for super p-branes]]} (\href{https://arxiv.org/abs/1611.06536}{arXiv:1611.06536}) \end{itemize} The derivation of the process of higher invariant extensions that leads from the [[nLab:superpoint]] to [[nLab:11-dimensional supergravity]]: \begin{itemize}% \item [[nLab:John Huerta]], [[nLab:Urs Schreiber]], \emph{[[schreiber:M-Theory from the Superpoint]]} \end{itemize} \end{document}