\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{gerbe} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{gerbes}{$G$-Gerbes}\dotfill \pageref*{gerbes} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{equivalence_of_gerbes_to_2bundles}{Equivalence of $G$-gerbes to $AUT(G)$-2-bundles}\dotfill \pageref*{equivalence_of_gerbes_to_2bundles} \linebreak \noindent\hyperlink{banded_gerbes}{Banded gerbes}\dotfill \pageref*{banded_gerbes} \linebreak \noindent\hyperlink{subentries}{Sub-entries}\dotfill \pageref*{subentries} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{general}{}\subsubsection*{{General}}\label{general} In full generality, we have the following definition of \emph{gerbe} . \begin{defn} \label{GeneralDef}\hypertarget{GeneralDef}{} Given an [[(∞,1)-topos]] $\mathcal{X}$, a \textbf{gerbe} in $\mathcal{X}$ is an [[object]] $\mathcal{G} \in \mathcal{X}$ that is \begin{enumerate}% \item [[1-truncated]] \item [[1-connective]] (= [[connected]]). \end{enumerate} \end{defn} The first condition says that a gerbe is an object in the [[(2,1)-topos]] $\tau_{\leq 1 } \mathcal{X} \hookrightarrow \mathcal{X}$ inside $\mathcal{X}$. This means that for $C$ any [[(∞,1)-site]] of definition for $\mathcal{X}$, a gerbe is a [[(2,1)-sheaf]] on $C$, $\mathcal{G} \in Sh_{(2,1)}(C)$: a [[stack]] on $C$. The second condition says that a gerbe is a stack that \emph{locally} looks like the [[delooping]] of a [[sheaf]] of [[group]]s. More precisely, it says that \begin{itemize}% \item the morphism $\mathcal{G} \to *$ to the [[terminal object in an (∞,1)-category|terminal object]] of $\mathcal{X}$ is an [[effective epimorphism in an (∞,1)-category|effective epimorphism)]]; \item the 0th [[categorical homotopy groups in an (∞,1)-topos|categorical homotopy]] group $\pi_0 \mathcal{G}$ is isomorphic to the terminal object $*$ as objects in the [[sheaf topos]] $\tau_{\leq 0} \mathcal{X} = Sh_{(1,1)}(C)$. Here $\pi_0 \mathcal{G}$ is the [[sheafification]] of the presheaf of connected components of the groupoids that $\mathcal{G} : C^{op} \to Grpd \hookrightarrow \infty Grpd$ assigns to each object in the site. \end{itemize} Traditionally this is phrased before sheafification as saying that a gerbe is a stack that is \emph{locally} non-empty and \emph{locally} connected . This is the traditional definition, due to \hyperlink{Giraud}{Giraud}. Also traditionally gerbes are considered in the [[little topos|little (2,1)-toposes]] $\tau_{\leq 1} \mathcal{X}$ of a [[topological manifold]] or [[smooth manifold]] $X$ or a [[topological stack]] or [[differentiable stack]] $X$. One then speaks of a \emph{gerbe over $X$} . More precisely, we may associate to any $X \in C :=$ [[Top]] or $X \in C :=$ [[Diff]] the corresponding [[big site]] $C/X$ and form the [[(2,1)-topos]] $\tau_{leq} \mathcal{X} := Sh_{(2,1)}(C/X)$. In terms of this a gerbe is given by a collection of groupoids assigned to patches of $X$, satisfying certain conditions. Equivalent to this is the [[over-(∞,1)-topos|over-(2,1)-topos]] $\tau_{\leq 1} \mathcal{H}/j(X)$, where $\tau_{\leq 1}\mathcal{H} := Sh_{(2,1)}(C)$ is the [[big topos|big]] [[(2,1)-topos]] over $C$ (and $j$ denotes its [[(∞,1)-Yoneda embedding|(2,1)-Yoneda embedding]]). Since this $\mathcal{H}$ is a [[cohesive (∞,1)-topos]] we may think of its objects a general [[topological ∞-groupoid|continuous ∞-groupoid]]s or [[∞-Lie groupoid|smooth ∞-groupoid]]s. In large parts of the literature coming after \hyperlink{Giraud}{Giraud} gerbes, or related structures equivalent to them, are described this way in terms of [[topological groupoid]]s and [[Lie groupoid]]s. This perspective is associated with the notion of a \emph{[[bundle gerbe]]} . \hypertarget{gerbes}{}\subsubsection*{{$G$-Gerbes}}\label{gerbes} We discuss gerbes that have a ``strucure group'' $G$ akin to a [[principal bundle]]. Indeed, while not the same concept, these \emph{$G$-gerbes} are [[equivalence in an (∞,1)-category|equivalent]] to $AUT(G)$-[[principal 2-bundle]]s, for $AUT(G)$ the [[automorphism 2-group]] of $G$. \begin{remark} \label{RelationToEMObjects}\hypertarget{RelationToEMObjects}{} The definition \ref{GeneralDef} of \emph{gerbe} is almost verbatim that of \emph{[[Eilenberg-MacLane object]]} in degree 1. The only difference is that the latter is required to have not only the homotopy sheaf $\pi_0 = *$, but even have a ``global section'' in the form of a morphism $* \to P$. First consider this locally. A gerbe (as any [[1-connected]] object) necessarily has \emph{local} sections: for \begin{displaymath} (x^* \dashv x_*) : \infty Grpd \stackrel{\overset{x^*}{\leftarrow}}{\underset{x_*}{\to}} \mathcal{X} \end{displaymath} any [[point of a topos|topos point]], the [[stalk]] functor $x^*$, being an [[inverse image]] is [[left exact functor|left exact]] and hence preserves [[categorical homotopy groups in an (∞,1)-topos|homotopy sheaves]] and [[terminal object]]s. It follows that the 0th homotopy sheaf is trivial \begin{displaymath} \pi_1 x^* P \simeq x^* \pi_1(P) \simeq x^* * \simeq * \end{displaymath} as are all the degree-$p$ homotopy sheaves for $p \gt 1$. Therefore $x^* P$ is a [[groupoid]] with a single object: the [[delooping]] groupoid of a [[group]] $G_x$: \begin{displaymath} x^* P \simeq B G_x \,. \end{displaymath} More generally, by the discussion at [[looping and delooping]] we have in an [[equivalence of (∞,1)-categories]] \begin{displaymath} (\Omega \dashv \mathbf{B}) : \infty Gpr(\mathcal{X}) \stackrel{\overset{\Omega}{\leftarrow}}{\underset{\mathbf{B}}{\to}} \mathcal{X}_{pt, \geq 1} \end{displaymath} between the [[∞-group]] objects in the ambient [[(∞,1)-topos]] $\mathcal{X}$ and the [[pointed object|pointed]] [[connected]] objects. It follows that for a gerbe $P$ that admits a global section $* \to P$ the above relation holds not only [[stalk]]-wise, but globally: it is the [[delooping]] of its own first [[categorical homotopy groups in an (∞,1)-topos|sheaf of homotopy groups]] \begin{displaymath} P \simeq \mathbf{B} \pi_1(P) \,. \end{displaymath} \end{remark} The following definition characterizes gerbes that are \emph{locally} of the form of remark \ref{RelationToEMObjects}. \begin{defn} \label{GGerbe}\hypertarget{GGerbe}{} Let $G \in Grp(\mathcal{X})$ be a group object. A gerbe $P \in \mathcal{X}$ is a \textbf{$G$-gerbe} if there exists an [[effective epimorphism]] $U \to *$ and an [[equivalence in an (∞,1)-category|equivalence]] \begin{displaymath} P|_U \simeq \mathbf{B}(G|_U) \,, \end{displaymath} where $P|_U := P \times U$ and $G|_U := G \times U$. \end{defn} \begin{remark} \label{}\hypertarget{}{} In a typical application one considers gerbes over some [[topological space]] $X$. In that case \begin{itemize}% \item $\mathcal{X} = Sh_{(\infty,1)}(Op(X))$ is the [[(∞,1)-category of (∞,1)-sheaves]] on the [[category of open subsets]] of $X$; \item the [[terminal object]] of $\mathcal{X}$ \emph{is} the space $X$, regarded as an object in its own $(\infty,1)$-topos, hence we can write $X := * \in \mathcal{X}$; \item a [[group object]] $G \in \mathcal{X}$ is [[sheaf]] of [[group]]s on $X$; \item an [[effective epimorphism]] $U \to *$, hence $U \to *$ is obtained from any [[open cover]] $\{U_i \to X\}$ by setting $U := \coprod_i U_i$; \item with such a choice of effective epimorphism, $G|_U = \coprod_i G|_{U_i}$ is simply the restriction of the sheaf of groups $G$ to each [[open subset]] that is a member of the cover; \item $\mathbf{B}G_{U} \in \mathcal{X}/U$ is the [[stack]] of $G_{U}$-[[principal bundle]]s on $U$. \end{itemize} \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{equivalence_of_gerbes_to_2bundles}{}\subsubsection*{{Equivalence of $G$-gerbes to $AUT(G)$-2-bundles}}\label{equivalence_of_gerbes_to_2bundles} Let $\mathcal{X}$ be any ambient [[(∞,1)-topos]]. Let $G \in Grp(\mathcal{X}) \subset \infty Grpd(\mathcal{X})$ be a [[group object]] (a [[0-truncated]] [[∞-group]]). Write \begin{displaymath} G Gerbe \subset \mathcal{X} \end{displaymath} for the [[core]] of the full [[sub-(∞,1)-category]] on $G$-gerbes in $\mathcal{X}$. Write \begin{displaymath} AUT(G) := Aut_{\mathcal{X}_{*}}(\mathbf{B}G) \in 2 Grp(\mathcal{X}) \subset \infty Grp(\mathcal{X}) \end{displaymath} for the [[2-group]] object called the [[automorphism 2-group]] of $G$. \begin{prop} \label{ClassificationOfGGerbes}\hypertarget{ClassificationOfGGerbes}{} $G$-gerbes in $\mathcal{X}$ are classified by first $AUT(G)$-[[nonabelian cohomology]] \begin{displaymath} \pi_0 G Gerbe \simeq \pi_0 \mathcal{X}(*, \mathbf{B} AUT(G)) =: H_{\mathcal{X}}^1(X,AUT(G)) \,. \end{displaymath} \end{prop} In the general perspective of [[(∞,1)-topos theory]] this appears as (\hyperlink{JardineLuo}{JardineLuo, theorem 23}). \begin{cor} \label{}\hypertarget{}{} Since [[nonabelian cohomology]] with coefficients in $AUT(G)$ also classified $AUT(G)$-[[principal 2-bundles]] it follows that also \begin{displaymath} \pi_0 G Gerbe \simeq AUT(G) 2Bund(*) \,. \end{displaymath} Notice that under this equivalence a $G$-gerbe is not identified with the total space object of the corresponding $AUT(G)$-[[principal 2-bundle]]. The latter differs by an $Aut(H)$-factor. Where a $G$-gerbe is locally equivalent to \begin{displaymath} \mathbf{B}(G|_U) = G|_U \stackrel{\to}{\to} *|_U \end{displaymath} an $AUT(G)$-principal 2-bundle is locally equivalent to \begin{displaymath} AUT(G|_U) = Aut(G|_U) \times G \stackrel{\overset{Ad(p_2) \cdot p_1}{\to}}{\underset{p_1}{\to}} Aut(G|_U) \,. \end{displaymath} Instead, under the above equivalence a gerbe is identified with the [[associated ∞-bundle]] with fibers $\mathbf{B}G$ that is associated via the canonical [[action]] of $AUT(G) = Aut(\mathbf{B}G)$ on $\mathbf{B}G$. \end{cor} \hypertarget{banded_gerbes}{}\subsubsection*{{Banded gerbes}}\label{banded_gerbes} For $G \in Grp(\mathcal{G})$, the [[automorphism 2-group]] $AUT(G)$ has a canonical morphism to its [[0-truncated|0-truncation]], the ordinary [[outer automorphism]] group object of $G$: \begin{displaymath} \to AUT(G) \to \pi_0(Aut(G)) =: Out(G) \,. \end{displaymath} Therefore every $AUT(G)$-[[cocycle]] has an underlying $Out(G)$-cocycle (an $Out(G)$-[[principal bundle]]): \begin{displaymath} \mathcal{X}(* , \mathbf{B}AUT(G)) \to \mathcal{X}(* , \mathbf{B}Out(G)) \,. \end{displaymath} By prop. \ref{ClassificationOfGGerbes} this an assignment of $Out(G)$-cohomology classes to $G$-gerbes: \begin{displaymath} Band : \pi_0 ( G Gerbe ) \to H_{\mathcal{X}}^1(X,Out(G)) \,. \end{displaymath} For $P \in G Gerbe$ one says that $Band(P)$ is its \textbf{band}. Sometimes in applications one considers not just the restriction from all gerbes to $G$-gerbes for some $G$, but further to $K$-banded $G$-gerbes for some $K \in H_{\mathcal{X}}^1(X,Out(G))$. The [[groupoid]] $G Gerbe_K(X)$ of $K$-banded gerbes is the $K$-[[twisted cohomology|twisted]] $\mathbf{B}^2 Z(G)$-cohomology of $X$ (where $Z(G)$ is the [[center]] of $G$): it is the [[homotopy pullback]] \begin{displaymath} \itexarray{ G Gerbe_K(X) &\to& {*} \\ \downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{K}} \\ \mathcal{X}(X,\mathbf{B}AUT(G)) &\to& \mathcal{X}(X, \mathbf{B}Out(G)) } \,. \end{displaymath} \hypertarget{subentries}{}\subsection*{{Sub-entries}}\label{subentries} More details on gerbes is at the following sub-entries: \begin{itemize}% \item [[gerbe (as a stack)]] \item [[gerbe (in nonabelian cohomology)]] \item [[gerbe (in differential geometry)]] \item [[bundle gerbe]] \item [[gerbe (general idea)]] \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[determinantal gerbe]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[principal bundle]] / [[torsor]] / [[associated bundle]] \item [[principal 2-bundle]] / \textbf{gerbe} / [[bundle gerbe]] \item [[principal 3-bundle]] / [[2-gerbe]] / [[bundle 2-gerbe]] \item [[principal ∞-bundle]] / [[associated ∞-bundle]] / [[∞-gerbe]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The definition of \emph{gerbe} goes back to (see also [[nonabelian cohomology]]) \begin{itemize}% \item [[J. Giraud]], \emph{Cohomologie non ab\'e{}lienne} , Springer (1971) \end{itemize} Introductions include \begin{itemize}% \item [[Lawrence Breen]], \emph{Notes on 1- and 2-gerbes} in [[John Baez]], [[Peter May]] (eds.) \emph{[[Towards Higher Categories]]} (\href{http://arxiv.org/abs/math/0611317}{arXiv:math/0611317}). \item [[Ieke Moerdijk]], \emph{Introduction to the language of stacks and gerbes} (\href{http://arxiv.org/abs/math/0212266}{arXiv:math/0212266}) \item [[Lawrence Breen]], \emph{Notes on 1- and 2-gerbes} in [[John Baez]], [[Peter May]] (eds.) \emph{[[Towards Higher Categories]]} (\href{http://arxiv.org/abs/math/0611317}{arXiv:math/0611317}). \end{itemize} A discussion from the point of view of [[(∞,1)-topos theory]] is in \begin{itemize}% \item [[Rick Jardine]], Z. Luo, \emph{Higher order principal bundles} , K-theory (2004) (\href{http://www.math.uiuc.edu/K-theory/0681/}{web}) \end{itemize} The definition for $n$-gerbes as $n$-truncated and $n$-connected objects (see [[∞-gerbe]]) is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects gerbes]] [[!redirects gerb]] \end{document}