\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{global equivariant homotopy theory} \begin{quote}% under construction (some more harmonization needed) \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cohesion}{Cohesion}\dotfill \pageref*{cohesion} \linebreak \noindent\hyperlink{relation_between_global_and_local_equivariant_homotopy_theory}{Relation between global and local equivariant homotopy theory}\dotfill \pageref*{relation_between_global_and_local_equivariant_homotopy_theory} \linebreak \noindent\hyperlink{relation_to_topological_stacks_and_orbispaces}{Relation to topological stacks and orbispaces}\dotfill \pageref*{relation_to_topological_stacks_and_orbispaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called \emph{global equivariant homotopy theory} is a variant of [[equivariant cohomology]] in [[homotopy theory]] where [[pointed object|pointed]] [[topological spaces]]/[[homotopy types]] are equipped with $G$-[[infinity-actions]] ``for all [[compact Lie groups]] $G$ at once'', or more generally for a [[global family]]. Sometimes this is referred to just as ``global homotopy theory'', leaving the equivariance implicit. There is also a [[stabilization|stable]] version involving [[spectra]] equipped with [[infinity-actions]], see at \emph{[[global equivariant stable homotopy theory]]}. More precisely, the \emph{global equivariant homotopy category} is the [[(∞,1)-category]] (or else its [[homotopy category of an (∞,1)-category|homotopy category]]) of [[(∞,1)-presheaves]] $PSh_\infty(Orb)$ on the [[global orbit category]] $Orb$ (\hyperlink{HenriquesGepner07}{Henriques-Gepner 07, section 1.3}), regarded as an [[(∞,1)-category]]. Here $Orb$ has as [[objects]] [[compact Lie groups]] and the [[(∞,1)-categorical hom-spaces]] $Orb(G,H) \coloneqq \Pi [\mathbf{B}G, \mathbf{B}H]$, where on the right we have the [[geometric realization of cohesive infinity-groupoids|fundamental (∞,1)-groupoid]] of the [[topological groupoid]] of [[group homomorphisms]] and [[conjugation|conjugations]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} We follow (\hyperlink{Rezk14}{Rezk 14}). Beware that the terminology there differs slightly but crucially in some places from (\hyperlink{HenriquesGepner07}{Henriques-Gepner 07}). Whatever terminology one uses, the following are the key definitions. The following is the \emph{[[global equivariant indexing category]]}. \begin{defn} \label{GlobalIndexingCategory}\hypertarget{GlobalIndexingCategory}{} Write $Glo$ for the [[(∞,1)-category]] whose \begin{itemize}% \item [[objects]] are [[compact Lie groups]]; \item [[(∞,1)-categorical hom-spaces]] $Glo(G,H)$ are the [[geometric realizations]] of the [[Lie groupoid]] of smooth functors and smooth [[natural transformations]] $Top\infty Grpd(\mathbf{B}G, \mathbf{B}H)$. \end{itemize} \end{defn} (\hyperlink{Rezk14}{Rezk 14, 2.1}) \begin{defn} \label{}\hypertarget{}{} Equivalent models for the global indexing category, def. \ref{GlobalIndexingCategory} include the category ``$O_{gl}$'' of (\hyperlink{May90}{May 90}). Another variant is $\mathbf{O}_{gl}$ of (\hyperlink{Schwede13}{Schwede 13}). \end{defn} (\hyperlink{Rezk14}{Rezk 14, 2.4, 2.5}) The following is the \emph{[[global orbit category]]}. \begin{defn} \label{GlobalOrbitCategory}\hypertarget{GlobalOrbitCategory}{} Write \begin{displaymath} Orb \longrightarrow Glo \end{displaymath} for the non-[[full sub-(∞,1)-category|full]] [[sub-(∞,1)-category]] of the global indexing category, def. \ref{GlobalIndexingCategory}, on the [[injection|injective]] group homomorphisms. \end{defn} (\hyperlink{Rezk14}{Rezk14, 4.5}) The following defines the \emph{global equivariant homotopy theory} $PSh_\infty(Glo)$. \begin{defn} \label{GlobalEquivariantHomotopyTopos}\hypertarget{GlobalEquivariantHomotopyTopos}{} Write \begin{displaymath} Top_{Glo} \coloneqq PSh_\infty(Glo) \end{displaymath} for the [[(∞,1)-category of (∞,1)-presheaves]] (an [[(∞,1)-topos]]) on the global indexing category $Glo$ of def. \ref{GlobalIndexingCategory}, and write \begin{displaymath} \mathbb{B} \;\colon\; Glo \longrightarrow PSh_\infty(Glo) \end{displaymath} for the [[(∞,1)-Yoneda embedding]]. Similarly write \begin{displaymath} Top_{Orb} \coloneqq PSh_\infty(Orb) \end{displaymath} for the [[(∞,1)-category of (∞,1)-presheaves]] on the [[global orbit category]] $Orb$ of def. \ref{GlobalOrbitCategory}, and write again \begin{displaymath} \mathbb{B} \;\colon\; Orb \longrightarrow PSh_\infty(Orb) \end{displaymath} for its [[(∞,1)-Yoneda embedding]]. \end{defn} (\hyperlink{Rezk14}{Rezk 14, 3.1 and 4.5}) The following recovers the ordinary (``local'') [[equivariant homotopy theory]] of a given [[topological group]] $G$ (``of $G$-spaces''). \begin{defn} \label{LocalEquivariantHomotopyTheory}\hypertarget{LocalEquivariantHomotopyTheory}{} For $G$ a [[topological group]], write \begin{displaymath} G Top \coloneqq PSh_\infty(Orb)/\mathbb{B}G \end{displaymath} for the [[slice (∞,1)-topos]] of $PSh_\infty(Orb)$ over the image of $G$ under the [[(∞,1)-Yoneda embedding]], as in def. \ref{GlobalEquivariantHomotopyTopos}. \end{defn} This is (\hyperlink{Rezk14}{Rezk 14, 1.5}). Depending on axiomatization this is either a definition or [[Elmendorf's theorem]], see at \emph{[[equivariant homotopy theory]]} for more on this. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{cohesion}{}\subsubsection*{{Cohesion}}\label{cohesion} \begin{prop} \label{CohesionOfGlobalEquivariantHomotopyTheory}\hypertarget{CohesionOfGlobalEquivariantHomotopyTheory}{} The global equivariant homotopy theory $PSh_\infty(Glo)$ of def. \ref{GlobalEquivariantHomotopyTopos} is a [[cohesive (∞,1)-topos]] over the canonical [[base (∞,1)-topos]] [[∞Grpd]]: the [[global section geometric morphism]] \begin{displaymath} (\Delta \dashv \Gamma) \;\colon\; PSh_\infty(Glo) \longrightarrow \infty Grpd \end{displaymath} is given (as for all (∞,1)-presheaf (∞,1)-toposes) by the [[direct image]]/[[global section]] functor being the [[homotopy limit]] over the opposite [[(∞,1)-site]] \begin{displaymath} \Gamma X \simeq \underset{\leftarrow}{\lim}(Glo^{op}\stackrel{X}{\to} \infty Grpd) \end{displaymath} and the [[inverse image]]/[[constant ∞-stack]] functor literally assigning constant presheaves: \begin{displaymath} \Delta S \colon G \mapsto S \,. \end{displaymath} This is a [[full and faithful (∞,1)-functor]]. Moreover, $\Delta$ has a further [[left adjoint]] $\Pi$ which preserves [[finite products]], and $\Gamma$ has a further [[right adjoint]] $\nabla$. \end{prop} (\hyperlink{Rezk14}{Rezk 14, 5.1}) More in detail, the [[shape modality]], [[flat modality]] and [[sharp modality]] of this [[cohesion]] of the global equivariant homotopy theory has the following description. \hypertarget{relation_between_global_and_local_equivariant_homotopy_theory}{}\subsubsection*{{Relation between global and local equivariant homotopy theory}}\label{relation_between_global_and_local_equivariant_homotopy_theory} \begin{defn} \label{InclusionOfGSpacesInTheGlobalTheory}\hypertarget{InclusionOfGSpacesInTheGlobalTheory}{} For $G$ a [[compact Lie group]] define an [[(∞,1)-functor]] \begin{displaymath} \delta_G \;\colon\; G Top \longrightarrow PSh_\infty(Glo) \end{displaymath} sending a [[topological G-space]] to the he presheaf which sends a group $H$ to the [[geometric realization]] of the [[topological groupoid]] of maps from $\mathbf{B}H$ to the [[action groupoid]] $X//G$: \begin{displaymath} \delta_G(X)\;\colon\; H \mapsto \Pi( [\mathbf{B}H, X//G] ) \,. \end{displaymath} Observe that by def. \ref{GlobalEquivariantHomotopyTopos} this gives $\delta_G(\ast) \simeq \mathbb{B}G$ and so $\delta_G$ induces a functor \begin{displaymath} \Delta_G \;\colon\; G Top \simeq G Top/\ast \simeq PSh_\infty(Orb)/\mathbb{B}G \stackrel{\delta_G}{\longrightarrow} PSh_\infty(Glo)/\mathbb{B}G \,. \end{displaymath} \end{defn} (\hyperlink{Rezk14}{Rezk 14, 3.2}) \begin{prop} \label{OrdinaryQuotientAndHomotopyQuotientViaCohesion}\hypertarget{OrdinaryQuotientAndHomotopyQuotientViaCohesion}{} \textbf{(ordinary [[quotient]] and [[homotopy quotient]] via equivariant cohesion)} On a $G$-space $X \in G Top$ included via def. \ref{InclusionOfGSpacesInTheGlobalTheory} into the global equivariant homotopy theory, \begin{itemize}% \item the [[shape modality]] of def. \ref{CohesionOfGlobalEquivariantHomotopyTheory} produces the [[homotopy type]] of the ordinary [[quotient]] of the $G$-[[action]] \begin{displaymath} \Pi(\delta_G(X)) \simeq \vert X/G \vert \,, \end{displaymath} \item the [[flat modality]] of def. \ref{CohesionOfGlobalEquivariantHomotopyTheory} produces the [[homotopy type]] of the [[homotopy quotient]]/[[homotopy coinvariants]] of the $G$-[[action]] ([[∞-action]]) \begin{displaymath} \Gamma(\delta_G(X)) \simeq \vert X//G \vert \,, \end{displaymath} \end{itemize} In particular then the [[points-to-pieces transform]] of general [[cohesion]] yields the comparison map \begin{displaymath} \vert X//G \vert \longrightarrow \vert X/G \vert \,. \end{displaymath} \end{prop} (\hyperlink{Rezk14}{Rezk 14, 5.1}) \begin{prop} \label{CohesionOnLocalSlice}\hypertarget{CohesionOnLocalSlice}{} For $G$ any [[compact Lie group]], the [[cohesion]] of the global equivariant homotopy theory, prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}, descends to the [[slice (∞,1)-toposes]] \begin{displaymath} PSh_\infty(Glo)/\mathbb{B}G \longrightarrow PSh_\infty(Orb)/\mathbb{B}G \simeq G Top \,, \end{displaymath} hence to cohesion over the ``local'' $G$-[[equivariant homotopy theory]]. The inclusion $\Delta_G$ is that of def. \ref{InclusionOfGSpacesInTheGlobalTheory}. \end{prop} (\hyperlink{Rezk14}{Rezk 14, 5.3}) \hypertarget{relation_to_topological_stacks_and_orbispaces}{}\subsubsection*{{Relation to topological stacks and orbispaces}}\label{relation_to_topological_stacks_and_orbispaces} \begin{quote}% under construction \end{quote} By the main theorem of (\hyperlink{HenriquesGepner07}{Henriques-Gepner 07}) the [[(∞,1)-presheaves]] on the [[global orbit category]] are equivalently ``cellular'' [[topological stacks]]/[[topological groupoids]] (``[[orbispaces]]''), we might write this as \begin{displaymath} ETopGrpd^{cell} = PSh_\infty(Orb) \,. \end{displaymath} (As such the global equivariant homotopy theory should be similar to [[ETop∞Grpd]]. Observe that this is a [[cohesive (∞,1)-topos]] with $\Pi$ such that it sends a topological [[action groupoid]] of a [[topological group]] $G$ acting on a [[topological space]] $X$ to the [[homotopy quotient]] $\Pi(X)//\Pi(G)$.) The central theorem of (\hyperlink{Rezk14}{Rezk 14}) (using a slightly different definition than \hyperlink{HenriquesGepner07}{Henriques-Gepner 07}) is that $PSh_\infty(Orb)$ is a [[cohesive (∞,1)-topos]] with $\Gamma$ producing homotopy quotients. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[orbifold cohomology]] \item [[global equivariant stable homotopy theory]] \end{itemize} [[!include equivariant homotopy theory -- table]] [[!include homotopy type representation theory -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The [[global orbit category]] $Orb$ is considered in \begin{itemize}% \item [[André Henriques]], [[David Gepner]], \emph{Homotopy Theory of Orbispaces} (\href{http://arxiv.org/abs/math/0701916}{arXiv:math/0701916}) \item [[Jacob Lurie]], Section 3 of \emph{Elliptic cohomology III: Tempered Cohomology} (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-III-Tempered.pdf}{pdf}) \end{itemize} Global unstable equivariant homotopy theory is discussed as a [[localization]] of the category of ``orthogonal spaces'' (the unstable version of [[orthogonal spectra]]) in \begin{itemize}% \item [[Stefan Schwede]], chapter I of \emph{[[Global homotopy theory]]}, 2013 (\href{http://www.math.uni-bonn.de/~schwede/global.pdf}{pdf}) \item [[Stefan Schwede]], \emph{Orbispaces, orthogonal spaces, and the universal compact Lie group} (\href{https://arxiv.org/abs/1711.06019}{arXiv:1711.06019}) \item [[Stefan Schwede]], \emph{[[Global homotopy theory]]} (\href{https://arxiv.org/abs/1802.09382}{arXiv:1802.09382}) \end{itemize} see also \begin{itemize}% \item [[Peter May]], \emph{Some remarks on equivariant bundles and classifying spaces}, Asterisque 191 (1990), 7, 239-253. International Conference on Homotopy Theory (Marseille-Luminy, 1988). \end{itemize} Discussion of the global equivariant homotopy theory as a [[cohesive (∞,1)-topos]] is in \begin{itemize}% \item [[Charles Rezk]], \emph{[[Global Homotopy Theory and Cohesion]]} (2014) \end{itemize} Discussion of a model structure for global equivariance with respect to [[geometrically discrete ∞-groupoid|geometrically discrete]] [[simplicial groups]]/[[∞-group]] (globalizing the [[Borel model structure]] for [[∞-actions]]) is in \begin{itemize}% \item [[Yonatan Harpaz]], [[Matan Prasma]], \emph{The Grothendieck construction for model categories} (\href{http://arxiv.org/abs/1404.1852}{arXiv:1404.1852}) \end{itemize} Discussion from a perspective of [[homotopy type theory]] is in \begin{itemize}% \item [[Mike Shulman]], \emph{Univalence for inverse EI diagrams} (\href{http://arxiv.org/abs/1508.02410}{arXiv:1508.02410}) \end{itemize} [[!redirects global homotopy theory]] [[!redirects global equivariant homotopy category]] [[!redirects globally equivariant homotopy theory]] \end{document}