\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{global section} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{of_bundles}{Of bundles}\dotfill \pageref*{of_bundles} \linebreak \noindent\hyperlink{of_sheaves_on_topological_spaces}{Of sheaves on topological spaces}\dotfill \pageref*{of_sheaves_on_topological_spaces} \linebreak \noindent\hyperlink{GeneralTopos}{Of objects in a general Grothendieck topos}\dotfill \pageref*{GeneralTopos} \linebreak \noindent\hyperlink{of_objects_in_an_topos}{Of objects in an $(\infty,1)$-topos}\dotfill \pageref*{of_objects_in_an_topos} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{global sections} of a [[bundle]] are simply its [[sections]]. When bundles are replaced by their [[sheaves]] of [[local sections]], then forming global sections corresponds to the [[direct image]] operation on sheaves with respect to the morphism to the [[terminal object|terminal]] [[site]]. This definition generalizes to objects in a general [[topos]] and [[(∞,1)-topos]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We start describing the more explicit notions of global sections of bundles and then work our way towards the more abstract notions in terms of [[topos]] theory. \hypertarget{of_bundles}{}\subsubsection*{{Of bundles}}\label{of_bundles} A \textbf{global [[section]]} of a [[bundle]] $E \overset{p}\to B$ is simply a [[section]] of $p$, that is a map $s\colon B \to E$ such that $p \circ s = \id_B$. \begin{displaymath} \itexarray{ && E \\ & {}^{\mathllap{s}}\nearrow & \downarrow^{\mathrlap{p}} \\ B &\stackrel{id}{\to}& B } \,. \end{displaymath} The adjective `global' here is used to distinguish from a \textbf{[[local section]]}: a \emph{generalised} section over some subspace $i : U \hookrightarrow B$ which is a section of the map to $U$ \begin{displaymath} i^* E := E|_U \to U \end{displaymath} from the [[pullback]] \begin{displaymath} \itexarray{ i^* E := E|_U &\to& E \\ \downarrow && \downarrow \\ U &\stackrel{i}{\to}& B } \,. \end{displaymath} Compare the notion of [[global point]], which is really the special case when $B$ is a [[terminal object]] (where the generalised section corresponds to a [[generalised element]]). On the other hand, a global section of $E \overset{p}\to B$ in $\mathcal{C}$ \emph{is} simply a global point in the [[slice category]] $\mathcal{C}/B$. One often writes \begin{displaymath} \Gamma_U(E) := Hom_{\mathcal{C}/U}(U , E|_U) \end{displaymath} for the \textbf{set of global sections} over $U$ (or $\Gamma(U,E)$ or similar). \hypertarget{of_sheaves_on_topological_spaces}{}\subsubsection*{{Of sheaves on topological spaces}}\label{of_sheaves_on_topological_spaces} Every [[sheaf]] $A \in Sh(X) = Sh(Op(X))$ on (the [[site]] that is given by the [[category of open subsets]] of) a [[topological space]] $X$ is the sheaf of \emph{[[local sections]]} of its [[etale space]] [[bundle]] $E \to X$ in that \begin{displaymath} A : U \mapsto \Gamma_U(E) \end{displaymath} for every $U \in Op(X)$. For this reasons one often speaks of the value of a [[sheaf]] on some object as a set of sections, even if the corresponding bundle is never mentioned and doesn't really matter. The set of global sections on $X$ is \begin{displaymath} \Gamma_X(A) = A(X) = Hom_{Sh(X)}(X, A) \,, \end{displaymath} where $X \in Sh(X)$ denotes the [[terminal object]] of the [[category of sheaves]] $Sh(X)$. Often this is written just using different notation \begin{displaymath} \Gamma_X(A) = Hom_{Sh(X)}(*,A) \end{displaymath} One notices that $\Gamma_X(-) : Sh(X) \to Set$ defined this way is the [[direct image]] functor on [[Grothendieck topos]]es that is induced from the canonical morphism $X \to *$ of [[topological space]]s (now ``$*$'' really denotes the [[point]] topological space!) and hence from the corresponding morphism of [[site]]s. Again, this expression for global sections induces a relative version, e.g. for sheaves on $S$-[[relative scheme|schemes]], the direct image functor goes into the base scheme $S$). \hypertarget{GeneralTopos}{}\subsubsection*{{Of objects in a general Grothendieck topos}}\label{GeneralTopos} The definition of global sections of sheaves on topological spaces in terms of the [[direct image]] of the canonical morphism to the terminal [[site]] generalizes to [[Grothendieck topos|sheaf topos]]es over arbitrary [[site]]s. For every [[Grothendieck topos]] $\mathcal{T}$, there is a [[geometric morphism]] \begin{displaymath} \Gamma : \mathcal{T} \stackrel{\leftarrow}{\to} Set : LConst \end{displaymath} called the \textbf{global sections} functor. It is given by the [[hom-set]] out of the [[terminal object]] \begin{displaymath} \Gamma(-) = Hom_{\mathcal{T}}({*}, -) \end{displaymath} and hence assigns to each object $A\in \mathcal{T}$ its set of [[global element]]s $\Gamma(A) = Hom_E(*,A)$. The [[left adjoint]] $LConst : Set \to E$ of the global section functor is the canonical [[Set]]-[[copower|tensoring]] functor \begin{displaymath} \otimes : Set \times \mathcal{T} \to \mathcal{T} \end{displaymath} applied to the [[terminal object]] \begin{displaymath} const = (-)\otimes {*} : Set \to \mathcal{T} \end{displaymath} which sends a set $S$ to the [[coproduct]] of $|S|$ copies of the terminal object \begin{displaymath} S \otimes {*} = \coprod_{s \in S} {*} \,. \end{displaymath} This is called the \textbf{constant object} of $\mathcal{T}$ on the set $S$. Notably when $\mathcal{T}$ is a [[Grothendieck topos|sheaf topos]] this is the \textbf{[[constant sheaf]]} $LConst_S$ on $S$. \begin{displaymath} \mathcal{T} \stackrel{\stackrel{LConst}{\leftarrow}}{\overset{\Gamma}{\to}} Set \,. \end{displaymath} If the topos $\mathcal{T}$ is a [[locally connected topos]] then the left adjoint functor $LConst$ is also a right adjoint, its left adjoint being the functor $\Pi_0 : \mathcal{T} \to Set$ that sends an object to its set of connected components. \hypertarget{of_objects_in_an_topos}{}\subsubsection*{{Of objects in an $(\infty,1)$-topos}}\label{of_objects_in_an_topos} The previous abstract definition generalizes straightforwardly to every context of [[higher category theory]] where the required notions of [[adjoint functor]] etc. are provided. Notably in [[(∞,1)-category]] theory the global section functor on an [[∞-stack]] [[(∞,1)-topos]] $\mathbf{H}$ is the [[hom-functor]] \begin{displaymath} \Gamma(-) := \mathbf{H}(*,-) : \; \mathbf{H} = Sh_{(\infty,1)}(C) \to Sh_{(\infty,1)}(*) = \infty Grpd \end{displaymath} of morphisms out of the terminal object. This is indeed again the terminal geometric morphism \begin{prop} \label{}\hypertarget{}{} Let $\mathbf{H}$ be an [[∞-stack]] [[(∞,1)-topos]]. Then the [[∞-groupoid]] $Geom(\mathbf{H}, \infty Grpd)$ of [[geometric morphism|geometric]] [[(∞,1)-functor]]s is [[contractible]]. So $\infty Grpd$ is the [[terminal object]] in the [[(∞,1)-category]] of [[(∞,1)-topos]]es and geometric morphisms. \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT 6.3.4.1]] \end{proof} If the [[(∞,1)-topos]] is a [[locally contractible (∞,1)-topos]] then this is an [[essential geometric morphism]]. The composite [[(∞,1)-functor]] $\Gamma \circ LConst$ is the [[shape of an (∞,1)-topos|shape of]] $\mathbf{H}$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[local section]], [[flat section]] \item [[abelian sheaf cohomology]] \item [[ex-space]] \item [[global element]] \end{itemize} [[!redirects global sections]] [[!redirects global sections functor]] [[!redirects global section functor]] [[!redirects global sections functors]] [[!redirects global section functors]] [[!redirects global section geometric morphism]] [[!redirects global section geometric morphisms]] [[!redirects global sections geometric morphism]] [[!redirects global sections geometric morphisms]] \end{document}