\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{globular set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{graph_theory}{}\paragraph*{{Graph theory}}\label{graph_theory} [[!include graph theory - contents]] \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{globular_sets}{}\section*{{Globular sets}}\label{globular_sets} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{basic_definition}{Basic definition}\dotfill \pageref*{basic_definition} \linebreak \noindent\hyperlink{ReflexiveGlobularSets}{Reflexive globular sets}\dotfill \pageref*{ReflexiveGlobularSets} \linebreak \noindent\hyperlink{globular_sets_2}{$n$-globular sets}\dotfill \pageref*{globular_sets_2} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{grothendieck_homotopy_theory}{Grothendieck homotopy theory}\dotfill \pageref*{grothendieck_homotopy_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Globular sets are to [[simplicial sets]] as [[globes]] are to simplices. They are one of the major [[geometric shapes for higher structures]]: if they satisfy a globular [[Segal condition]] then they are equivalent to [[strict ∞-categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{basic_definition}{}\subsubsection*{{Basic definition}}\label{basic_definition} \begin{defn} \label{}\hypertarget{}{} The \textbf{[[globe category]]} $\mathbb{G}$ is the [[category]] whose [[objects]] are the [[natural numbers]], denoted here $[n] \in \mathbb{N}$ (N.B. not to be confused with ordinals in any structural sense) and whose morphisms are [[generators and relations|generated]] from \begin{displaymath} \sigma_n : [n] \to [n+1] \end{displaymath} \begin{displaymath} \tau_n : [n] \to [n+1] \end{displaymath} for all $n \in \mathbb{N}$ subject to the relations (dropping obvious subscripts) \begin{displaymath} \sigma\circ \sigma = \tau \circ \sigma \end{displaymath} \begin{displaymath} \sigma\circ \tau = \tau \circ \tau \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} A \emph{globular set}, also called an \emph{$\omega$-[[graph]]}, is a [[presheaf]] on $\mathbb{G}$. The [[category]] of globular sets is the [[category of presheaves]] \begin{displaymath} gSet \coloneqq PSh(\mathbb{G}) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} This means that a globular set $X \in gSet$ is given by a collection of sets $\{X_n\}_{n \in \mathbb{N}}$ (the \textbf{set of $n$-[[globes]]}) equipped with [[functions]] \begin{displaymath} \{s_n,t_n \colon X_{n+1} \to X_n\}_{n \in \mathbb{N}} \end{displaymath} called the \textbf{$n$-source} and \textbf{$n$-target} maps (or similar), such that the \textbf{globular identities} hold: for all $n \in \mathbb{N}$ \begin{itemize}% \item $s_n \circ s_{n+1} = s_n \circ t_{n+1}$ \item $t_n \circ s_{n+1} = t_n \circ t_{n+1}$. \end{itemize} \end{remark} \begin{remark} \label{}\hypertarget{}{} The globular identities ensure that two sequences of boundary maps \begin{displaymath} f_n \circ \cdots \circ f_{n+m-1} \circ f_{n+m} : S_{n+m+1} \to S_n \end{displaymath} with $n,m \in \mathbb{N}$ and for $f_k, \in \{s_k, t_k\}$ are equal if and only if their last term $f_n$ coincides; for all $n,m \in \mathbb{N}$ we have \begin{displaymath} s_n \cdots s_{n+1} \circ \cdots \circ s_{n+m} \circ i_{n+m} \circ \cdots \circ i_{n+1} \circ i_n = \mathrm{Id} \end{displaymath} \begin{displaymath} t_n \cdots t_{n+1} \circ \cdots \circ t_{n+m} \circ i_{n+m} \circ \cdots \circ i_{n+1} \circ i_n = \mathrm{Id} \,. \end{displaymath} For $S$ a globular set we may therefore write unambiguously \begin{displaymath} s_n, t_n : S_{n+m+1} \to S_n \end{displaymath} \begin{displaymath} i_n : S_n \to S_{n+m+1} \end{displaymath} with $i_n, s_n, t_m$ the sequence of $m$ consecutive identity-assigning, source or target maps, respectively. \end{remark} \begin{remark} \label{}\hypertarget{}{} The presheaf definition can understood from the point of view of [[space and quantity]]: a \emph{globular set} is a space characterized by the fact that and how it may be \emph{probed} by mapping standard globes into it: the set $S_n$ assigned by a globular set to the standard $n$-globe $[n]$ is the set of $n$-globes in this space, hence the way of mapping a standard $n$-globe into this spaces. \end{remark} More generally: \begin{defn} \label{}\hypertarget{}{} A \textbf{globular object} $X$ [[internalization|in]] a [[category]] $\mathcal{C}$ is a [[functor]] $X : \mathbb{G}^{\mathrm{op}} \to \mathcal{C}$. \end{defn} \hypertarget{ReflexiveGlobularSets}{}\subsubsection*{{Reflexive globular sets}}\label{ReflexiveGlobularSets} If to the globe category we add additional generating morphisms \begin{displaymath} \iota_n : [n+1] \to [n] \end{displaymath} satisfying the relations \begin{displaymath} \iota \circ \sigma = \mathrm{Id} \end{displaymath} \begin{displaymath} \iota \circ \tau = \mathrm{Id} \end{displaymath} we obtain the \textbf{reflexive globe category}, a presheaf on which is a \textbf{reflexive globular set}. In this case the morphism \begin{displaymath} i_n := S(\iota_n) : S_{n} \to S_{n+1} \end{displaymath} is called the $n$th \textbf{identity assigning map}; it satisfies the globular identities: \begin{displaymath} s \circ i = \mathrm{Id} \end{displaymath} \begin{displaymath} t \circ i = \mathrm{Id} \end{displaymath} \hypertarget{globular_sets_2}{}\subsubsection*{{$n$-globular sets}}\label{globular_sets_2} A presheaf on the full subcategory of the globe category containing only the integers $[0]$ through $[n]$ is called an \textbf{$n$-globular set} or an \textbf{$n$-graph}. An $n$-globular set may be identified with an $\infty$-globular set which is empty above dimension $n$. Note that a $1$-globular set is just a [[directed graph]], and a $0$-globular set is just a [[set]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Any [[strict 2-category]] or [[bicategory]] has an underlying 2-globular set. Likewise, any [[tricategory]] has an underlying 3-globular set. Globular sets can be used as underlying data for [[n-categories]] as well; see for instance [[Batanin ∞-category]]. \item A \emph{[[strict omega-category]]} is a globular set $C$ equipped in each degree with the structure of a [[category]] such that for every pair $k_1 \lt k_2 \in \mathbb{N}$ the induced structure on the 2-graph $C_{k_2} \stackrel{\to}{\to} C_{k_1} \stackrel{\to}{\to} C_0$ is that of a [[strict 2-category]]. \item The \textbf{globular $n$-globe} $G_n$ is the globular set represented by $n$, i.e. $G_n(-) := Hom_G(-,n)$. \end{itemize} \hypertarget{grothendieck_homotopy_theory}{}\subsection*{{Grothendieck homotopy theory}}\label{grothendieck_homotopy_theory} The category of [[globes]] is not a [[weak test category]] according to Scholium 8.4.14 in Cisinski \ref{PMTH}. However, if we construct the free [[strict monoidal category]] on the category of [[globes]], while ensuring that the terminal object becomes the monoidal unit, then the resulting category of polyglobes is a [[test category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[graph]] \item [[directed graph]] \begin{itemize}% \item \textbf{directed $n$-graph} \end{itemize} \item [[ribbon graph]] \item [[Theta category]], \item [[globular theory]], [[globular operad]] \item Also related is the notion of [[computad]], which is similar to a globular set in some ways, but allows ``formal composites'' of $n$-cells to appear in the sources and targets of $(n+1)$-cells. \item [[simplicial object]] \begin{itemize}% \item [[simplicial set]] \item [[simplicial object in an (∞,1)-category]] \end{itemize} \item [[semi-simplicial object]] \begin{itemize}% \item [[semisimplicial set]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The definition is reviewed around def. 1.4.5, p. 49 of \begin{itemize}% \item [[Tom Leinster]]: \emph{Higher operads, higher categories} (\href{http://arxiv.org/abs/math/0305049}{arXiv:math/0305049}) \end{itemize} See also \begin{itemize}% \item [[Sjoerd Crans]], \emph{On combinatorial models for higher dimensional homotopies} (\href{https://web.archive.org/web/20130514164856/http://home.tiscali.nl/secrans/papers/comb.html}{web}) \item [[R. Street]], \emph{The petit topos of globular sets} , JPAA \textbf{154} (2000) pp.299-315. \end{itemize} $\backslash$bibitem\{PMTH\} [[Denis-Charles Cisinski]], \emph{Les préfaisceaux comme modèles des types d’homotopie}, Asterisque. The definition of globular set, without using that term, is in 2.2 and 2.3 of the following paper: \begin{itemize}% \item [[Ronnie Brown]] and Philip J. Higgins, ``The equivalence of $\infty$-groupoids and crossed complexes'', Cah. Top. G'eom. Diff. 22 (1981) 371-386. \end{itemize} The following paper constructs from the cubical case a strict globular $\omega$-groupoid of a filtered space: \begin{itemize}% \item [[Ronnie Brown]] ``A new higher homotopy groupoid: the fundamental globular $\omega$-groupoid of a filtered space'', Homotopy, Homology and Applications, 10 (2008), No. 1, pp.327-343. \end{itemize} [[!redirects globular set]] [[!redirects globular sets]] [[!redirects reflexive globular set]] [[!redirects reflexive globular sets]] [[!redirects n-globular set]] [[!redirects n-globular sets]] [[!redirects reflexive n-globular set]] [[!redirects reflexive n-globular sets]] [[!redirects omega-graph]] [[!redirects omega-graphs]] [[!redirects ∞-graph]] [[!redirects ∞-graphs]] [[!redirects infinity-graph]] [[!redirects infinity-graphs]] [[!redirects ∞-graph]] [[!redirects ∞-graphs]] [[!redirects n-graph]] [[!redirects n-graphs]] [[!redirects omega-quiver]] [[!redirects omega-quivers]] [[!redirects ∞-quiver]] [[!redirects ∞-quivers]] [[!redirects infinity-quiver]] [[!redirects infinity-quivers]] [[!redirects ∞-quiver]] [[!redirects ∞-quivers]] [[!redirects n-quiver]] [[!redirects n-quivers]] [[!redirects directed omega-graph]] [[!redirects directed omega-graphs]] [[!redirects directed ∞-graph]] [[!redirects directed ∞-graphs]] [[!redirects directed infinity-graph]] [[!redirects directed infinity-graphs]] [[!redirects directed ∞-graph]] [[!redirects directed ∞-graphs]] [[!redirects directed n-graph]] [[!redirects directed n-graphs]] [[!redirects omega-directed graph]] [[!redirects omega-directed graphs]] [[!redirects ∞-directed graph]] [[!redirects ∞-directed graphs]] [[!redirects infinity-directed graph]] [[!redirects infinity-directed graphs]] [[!redirects ∞-directed graph]] [[!redirects ∞-directed graphs]] [[!redirects n-directed graph]] [[!redirects n-directed graphs]] [[!redirects reflexive omega-graph]] [[!redirects reflexive omega-graphs]] [[!redirects reflexive ∞-graph]] [[!redirects reflexive ∞-graphs]] [[!redirects reflexive infinity-graph]] [[!redirects reflexive infinity-graphs]] [[!redirects reflexive ∞-graph]] [[!redirects reflexive ∞-graphs]] [[!redirects reflexive n-graph]] [[!redirects reflexive n-graphs]] [[!redirects reflexive omega-quiver]] [[!redirects reflexive omega-quivers]] [[!redirects reflexive ∞-quiver]] [[!redirects reflexive ∞-quivers]] [[!redirects reflexive infinity-quiver]] [[!redirects reflexive infinity-quivers]] [[!redirects reflexive ∞-quiver]] [[!redirects reflexive ∞-quivers]] [[!redirects reflexive n-quiver]] [[!redirects reflexive n-quivers]] [[!redirects reflexive directed omega-graph]] [[!redirects reflexive directed omega-graphs]] [[!redirects reflexive directed ∞-graph]] [[!redirects reflexive directed ∞-graphs]] [[!redirects reflexive directed infinity-graph]] [[!redirects reflexive directed infinity-graphs]] [[!redirects reflexive directed ∞-graph]] [[!redirects reflexive directed ∞-graphs]] [[!redirects reflexive directed n-graph]] [[!redirects reflexive directed n-graphs]] [[!redirects reflexive omega-directed graph]] [[!redirects reflexive omega-directed graphs]] [[!redirects reflexive ∞-directed graph]] [[!redirects reflexive ∞-directed graphs]] [[!redirects reflexive infinity-directed graph]] [[!redirects reflexive infinity-directed graphs]] [[!redirects reflexive ∞-directed graph]] [[!redirects reflexive ∞-directed graphs]] [[!redirects reflexive n-directed graph]] [[!redirects reflexive n-directed graphs]] \end{document}