\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{graded monad} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{uses}{Uses}\dotfill \pageref*{uses} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} By analogy with [[graded algebra]], a \textbf{$\mathcal{M}$-graded monad} in a category $\mathcal{C}$ for a [[monoidal category]], $(\mathcal{M}, \otimes, I)$, is a [[lax monoidal functor]], $(\mathcal{M}, \otimes, I) \to ([\mathcal{C}, \mathcal{C}], \circ, id_{\mathcal{C}})$. This generalizes the concept of [[monad]] which may be consider as graded by $\mathbf{1}$, the [[terminal category]]. This definition may be rephrased in terms of a lax action of $\mathcal{M}$ on $\mathcal{C}$. Equivalently, a $\mathcal{M}$-graded monad is a lax [[2-functor]] from the \href{https://ncatlab.org/nlab/show/delooping#deloopings_of_higher_categorical_structures}{delooping} (or ``suspension'') of $\mathcal{M}$, $\mathbf{B} \mathcal{M} \to Cat$. Just as [[monads]] may be defined in any 2-category, $K$, this suggests that we may generalize graded monads to lax 2-functors $\mathbf{B} \mathcal{M} \to K$. Graded monads are also known as \textbf{parametric} monads. The grading idea may also be applied to [[comonads]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{enumerate}% \item The grading may arise from a monoid $(M, \otimes, e)$. Then for some given category, $C$, we have a family of endofunctors, $T_m$, indexed by elements of $M$, with maps $\mu_{m, n, X}: T_m(T_n X) \to T_{m \otimes n} X$ and $\eta_{X}: X \to T_{e} X$, for $m, n$ in $M$ and $X$ in $C$. For instance, there is a $(\mathbb{N}, \times, 1)$-graded monad on sets where $T_n$ returns lists of length $n$ of elements of a set. \item In computer science, monads model [[side effects|effects]] and comonads coeffects. Grading can therefore allow further annotation of these. For instance, there are graded versions of the [[reader monad]], [[state monad]] and [[writer comonad]] (\hyperlink{OrchPet}{OrchPet}). \item Any [[graded modality]], such as found in [[bounded linear logic]]. \item For graded monads relevant for probability theory see (\hyperlink{Perrone}{Perrone}). \item Given the strict action of a monoidal category, $\mathcal{M}$ on a category $\mathcal{B}$, and an adjunction \end{enumerate} $\backslash$begin\{center\} $\backslash$begin\{tikzcd\} $\backslash$mathcal\{A\} $\backslash$arrowr, shift right=6pt, ``R''', ``$\backslash$bot'' \& $\backslash$mathcal\{B\}, $\backslash$arrowl, shift right=6pt, ``L''' $\backslash$end\{tikzcd\} $\backslash$end\{center\} then $\mathcal{A}$ inherits a lax action of $\mathcal{M}$ and is hence a graded monad. Every lax action can be generated from a strict action in this way. Initial and terminal such resolutions of a lax action then generalize the $\mathcal{M} \cong 1$ situation in which is a monad is resolved into adjunctions with the [[Kleisli category|Kleisli]] and [[Eilenberg-Moore category|Eilenberg-Moore]] categories (\hyperlink{FKM}{FKM 16}). \hypertarget{uses}{}\subsection*{{Uses}}\label{uses} Graded monads can be used to construct ordinary monads by left Kan extension in the 2-category of [[monoidal category|monoidal categories]], [[lax monoidal functor|lax monoidal functors]], and [[monoidal natural transformation|monoidal transformations]]. There are known criteria for when this Kan extension exists; see (\hyperlink{FPKan}{Fritz \& Perrone 18, Theorem 2.1}), as well as the references in there on algebraic Kan extensions. For example, taking the left Kan extension of the graded list monad $\mathbf{B} \mathbb{N} \to [Set,Set]$ described above results in the usual list monad on $Set$, given by a lax monoidal functor $1 \to [Set,Set]$. Based on a similar construction on the category of complete metric spaces, (\hyperlink{FPKant}{Fritz \& Perrone 17}) have contructed a monad of Radon probability measures without any appeal to measure theory; the intuitive idea being that a probability measure can be thought of as an idealized version of a finite sample, and spaces of finite samples make up a graded monad. Forgetting the grading by taking the above Kan extension then produces the \emph{Kantorovich monad}, containing all Radon probability measures of finite first moment. This construction reduces certain problems in measure-theoretic probability to purely combinatorial problems. A \emph{useful feature} of such constructions is that the multiplication of the graded monad is often a \emph{strong} monoidal functor in practice. For the graded list monad, this is because a list of length $m n$ can be decomposed uniquely into a list of length $m$ of lists of length $n$, so that the multiplication $T_m T_n X \longrightarrow T_{m n} X$ is an isomorphism. For the probability monad mentioned in the previous paragraph, the analogous phenomenon occurs as well, and this can be exploited e.g. in order to prove a disintegration theorem for finite first moment Radon probability measures on complete metric spaces (\hyperlink{Perrone}{Perrone, Theorem 2.6.9}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[graded modality]] \item [[monad]] \item [[actegory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Soichiro Fujii, Shin-ya Katsumata, and [[Paul-André Melliès]], \emph{Towards a Formal Theory of Graded Monads}, (\href{https://www.irif.fr/~mellies/papers/fossacs2016-final-paper.pdf}{pdf}) \item Soichiro Fujii, \emph{A 2-Categorical Study of Graded and Indexed Monads}, (\href{https://arxiv.org/abs/1904.08083}{arXiv:1904.08083}) \item Ulrich Dorsch, Stefan Milius and Lutz Schröder, \emph{Graded Monads and Graded Logics for the Linear Time – Branching Time Spectrum}, (\href{https://arxiv.org/abs/1812.01317}{arXiv:1812.01317}) \item Paolo Perrone, \emph{Categorical Probability and Stochastic Dominance in Metric Spaces}, (\href{http://www.paoloperrone.org/phdthesis.pdf}{thesis}) \item [[Tobias Fritz]] and Paolo Perrone, \emph{A Criterion for Kan Extensions of Lax Monoidal Functors}, (\href{https://arxiv.org/abs/1809.10481}{arXiv:1809.10481}). \item [[Tobias Fritz]] and Paolo Perrone, \emph{A Probability Monad as the Colimit of Spaces of Finite Samples}, (\href{https://arxiv.org/abs/1712.05363}{arXiv:1712.05363}). \item [[Dominic Orchard]], Tomas Petricek, \emph{Embedding effect systems in Haskell}, (\href{https://www.doc.ic.ac.uk/~dorchard/publ/haskell14-effects.pdf}{pdf}) \end{itemize} \end{document}