\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{gravity} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{CovariantPhaseSpaceReferences}{Covariant phase space}\dotfill \pageref*{CovariantPhaseSpaceReferences} \linebreak \noindent\hyperlink{nonrenormalizability}{Non-renormalizability}\dotfill \pageref*{nonrenormalizability} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[field (physics)|field]] configuration of the [[physical theory]] of \emph{gravity} on a [[spacetime]] $X$ is equivalently \begin{itemize}% \item a [[vielbein]] field, hence a [[reduction of the structure group]] of the [[tangent bundle]] along $\mathbf{B} O(n-1,1) \to \mathbf{B}GL(n)$, defining a [[pseudo-Riemannian metric]]; \item a [[connection on a bundle|connection]] that is locally a [[Lie algebra-valued 1-form]] with values in the [[Poincare Lie algebra]]. \begin{displaymath} (E, \Omega) : T X \to \mathfrak{iso}(d-1,1) \end{displaymath} such that this is a [[Cartan connection]]. \end{itemize} (This parameterization of the gravitational field is called the [[first-order formulation of gravity]].) The component $E$ of the connection is the [[vielbein]] that encodes a [[pseudo-Riemannian metric]] $g = E \cdot E$ on $X$ and makes $X$ a [[pseudo-Riemannian manifold]]. Its quanta are the [[graviton]]s. The [[non-propagating field]] $\Omega$ is the [[spin connection]]. The [[action functional]] on the space of such connection which defines the [[classical field theory]] of gravity is the [[Einstein-Hilbert action]]. More generally, [[supergravity]] is a [[gauge theory]] over a [[supermanifold]] $X$ for the [[super Euclidean group|super Poincare group]]. The field of supergravity is a Lie-algebra valued form with values in the [[super Poincare Lie algebra]]. \begin{displaymath} (E,\Omega, \Psi) : T X \to \mathfrak{siso}(d-1,1) \end{displaymath} The additional [[fermion]]ic field $\Psi$ is the [[gravitino]] field. So the [[configuration space]] of gravity on some $X$ is essentially the [[moduli space of Riemannian metrics]] on $X$. \hypertarget{details}{}\subsection*{{Details}}\label{details} \begin{quote}% for the moment see [[D'Auria-Fre formulation of supergravity]] for further details \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Einstein-Hilbert action]], [[Einstein equation]] \item [[rubber-sheet analogy of gravity]] \item [[general covariance]] \item [[Penrose-Hawking theorem]], [[cosmic censorship hypothesis]] \item [[weak gravity conjecture]] \item [[first order formulation of gravity]] \begin{itemize}% \item [[Plebanski formulation of gravity]], [[gravity as a BF-theory]], [[teleparallel gravity]] \item [[Chern-Simons gravity]] \end{itemize} \item [[Einstein-Maxwell theory]], [[Einstein-Yang-Mills theory]] \item [[higher order curvature corrections]] \item [[supergravity]] \item 2d gravity \begin{itemize}% \item [[Liouville theory]] \item [[Jackiw-Teitelboim gravity]] \end{itemize} \item [[spacetime]] \begin{itemize}% \item [[black hole]] \item [[gravitational wave]] \end{itemize} \item gravitational entropy \begin{itemize}% \item [[Bekenstein-Hawking entropy]] \item [[generalized second law of thermodynamics]] \end{itemize} \item [[energy condition]] \item [[positive energy theorem]] \item [[asymptotic safety]] \item [[cosmology]] \begin{itemize}% \item [[standard model of cosmology]] \end{itemize} \item [[MOND]] \item [[computer experiment]]: [[gevolution]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Textbooks include \begin{itemize}% \item [[Charles Misner]], [[Kip Thorne]], [[John Wheeler]], \emph{[[Gravitation]]}, 1973 \end{itemize} Lecture notes \begin{itemize}% \item [[Matthias Blau]], \emph{Lecture notes on general relativity} (\href{http://www.blau.itp.unibe.ch/GRLecturenotes.html}{web}) \item Emil T. Akhmedov, \emph{Lectures on General Theory of Relativity} (\href{https://arxiv.org/abs/1601.04996}{arXiv:1601.04996}) \item Pietro Menotti, \emph{Lectures on gravitation} (\href{https://arxiv.org/abs/1703.05155}{arXiv:1703.05155}) \end{itemize} See also \begin{itemize}% \item [[Alan Coley]], \emph{Mathematical General Relativity} (\href{https://arxiv.org/abs/1807.08628}{arXiv:1807.08628}) \end{itemize} The theory of gravity based on the standard [[Einstein-Hilbert action]] may be regarded as just an [[effective quantum field theory]], which makes some of its notorious problems be non-problems: \begin{itemize}% \item [[John Donoghue]], \emph{Introduction to the Effective Field Theory Description of Gravity} (\href{http://arxiv.org/abs/gr-qc/9512024}{arXiv:gr-qc/9512024}) \end{itemize} See also the references at \emph{[[general relativity]]}. \hypertarget{CovariantPhaseSpaceReferences}{}\subsubsection*{{Covariant phase space}}\label{CovariantPhaseSpaceReferences} The (reduced) [[covariant phase space]] of gravity (presented for instance by its [[BV-BRST complex]], see there fore more details) is discussed for instance in \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], \emph{Towards a Background Independent Formulation of Perturbative Quantum Gravity} (\href{http://arxiv.org/abs/gr-qc/0603079}{arXiv:gr-qc/0603079}) \end{itemize} which is surveyed in \begin{itemize}% \item Katarzyna Rejzner, \emph{The BV formalism applied to classical gravity} (\href{http://rejzner.com/talks/Karlsruhe2011.pdf}{pdf}) \end{itemize} Careful discussion of [[observables]] in gravity is in \begin{itemize}% \item [[Igor Khavkine]], \emph{Local and gauge invariant observables in gravity}, talk at \href{http://www.science.unitn.it/~moretti/convegno/convegno.html}{Operator and Geometric Analysis on Quantum Theory}, preprint \href{https://arxiv.org/abs/1503.03754}{arXiv:1503.03754} \end{itemize} \hypertarget{nonrenormalizability}{}\subsubsection*{{Non-renormalizability}}\label{nonrenormalizability} The result that gravity is not [[renormalization|renormalizable]] is due to \begin{itemize}% \item [[Gerard `t Hooft]] and [[Martinus Veltman]], \emph{One loop divergencies in the theory of gravitation}, Ann. Inst. Poincar \'e{} 20 (1974) 69. \end{itemize} Review includes \begin{itemize}% \item [[Zvi Bern]], \emph{Perturbative quantum gravity and its relation to gauge theory}, Living reviews in relativity, \href{www.livingreviews.org/Articles/Volume5/2002-5bern}{www.livingreviews.org/Articles/Volume5/2002-5bern} . \item Assaf Shomer, \emph{A pedagogical explanation for the non-renormalizability of gravity} (\href{https://arxiv.org/abs/0709.3555}{arXiv:0709.3555}) \end{itemize} [[!redirects Einstein gravity]] \end{document}