\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{delooping}{Delooping}\dotfill \pageref*{delooping} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{internalization}{Internalization}\dotfill \pageref*{internalization} \linebreak \noindent\hyperlink{in_higher_categorical_and_homotopical_contexts}{In higher categorical and homotopical contexts}\dotfill \pageref*{in_higher_categorical_and_homotopical_contexts} \linebreak \noindent\hyperlink{weakened_axioms}{Weakened axioms}\dotfill \pageref*{weakened_axioms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{special_types_and_classes}{Special types and classes}\dotfill \pageref*{special_types_and_classes} \linebreak \noindent\hyperlink{concrete_examples}{Concrete examples}\dotfill \pageref*{concrete_examples} \linebreak \noindent\hyperlink{counterexamples}{Counterexamples}\dotfill \pageref*{counterexamples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{group} is a [[monoid]] in which every element has an [[inverse]] (necessarily unique). An \textbf{[[abelian group]]} is a group in which moreover the order in which two elements are multiplied is irrelevant. \hypertarget{delooping}{}\subsection*{{Delooping}}\label{delooping} To some extent, a group ``is'' a [[groupoid]] with a single object, or more precisely a [[pointed object|pointed]] groupoid with a single object. The [[delooping]] of a group $G$ is a [[groupoid]] $\mathbf{B} G$ with \begin{itemize}% \item $Obj(\mathbf{B}G) = \{\bullet\}$ \item $Hom_{\mathbf{B}G}(\bullet, \bullet) = G$. \end{itemize} Since for $G, H$ two groups, [[functors]] $\mathbf{B}G \to \mathbf{B}H$ are canonically in bijection with group homomorphisms $G \to H$, this gives rise to the following statement: Let [[Grpd]] be the 1-[[category]] whose objects are [[groupoids]] and whose [[morphisms]] are [[functors]] (discarding the [[natural transformations]]). Let [[Grp]] be the category of groups. Then the [[delooping]] functor \begin{displaymath} \mathbf{B} : Grp \to Grpd \end{displaymath} is a [[full and faithful functor]]. In terms of this functor we may regard groups as the full [[subcategory]] of groupoids on groupoids with a single object. It is in this sense that a group really is a groupoid with a single object. But notice that it is unnatural to think of [[Grpd]] as a 1-category. It is really a [[2-category]], namely the sub-2-category of [[Cat]] on groupoids. And the category of groups is \emph{not} equivalent to the full sub-2-category of the 2-category of groupoids on one-object groupoids. The reason is that two functors: \begin{displaymath} \mathbf{B}f_1, \mathbf{B}f_2 : \mathbf{B}G \to \mathbf{B}H \end{displaymath} coming from two group homomorphisms $f_1, f_2 : G \to H$ are related by a [[natural transformation]] $\eta_h : f_1 \to f_2$ with single component $\eta_h : \bullet \mapsto h \in Mor(\mathbf{B} H)$ for each element $h \in H$ such that the homomorphisms $f_1$ and $f_2$ differ by the [[inner automorphism]] $Ad_h : H \to H$ \begin{displaymath} (\eta_h : \mathbf{B}f_1 \to \mathbf{B}f_2) \Leftrightarrow (f_2 = Ad_h \circ f_1) \,. \end{displaymath} To fix this, look at the category of [[pointed object|pointed]] groupoids with [[pointed functor|pointed functors]] and pointed natural transformations. Between group homomorphisms as above, only identity transformations are pointed, so $Grp$ becomes a full sub-$2$-category of $Grpd_*$ (one that happens to be a $1$-[[1-category|category]]). (Details may be found in the appendix to [[Lectures on n-Categories and Cohomology]] and should probably be added to [[pointed functor]] and maybe also [[k-tuply monoidal n-category]].) \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \hypertarget{internalization}{}\subsubsection*{{Internalization}}\label{internalization} A \textbf{[[group object]]} [[internalization|internal to]] a [[category]] $C$ with finite [[product|products]] is an object $G$ together with maps $mult:G\times G\to G$, $id:1\to G$, and $inv:G\to G$ such that various diagrams expressing associativity, unitality, and inverses commute. Equivalently, it is a functor $C^{op}\to Grp$ whose underlying functor $C^{op} \to Set$ is [[representable functor|representable]]. For example, a group object in [[Diff]] is a [[Lie group]]. A group object in [[Top]] is a [[topological group]]. A group object in [[Sch/S]] (the category or [[relative schemes]]) is an $S$-[[group scheme]]. And a group object in $CAlg^{op}$, where [[CAlg]] is the category of [[commutative algebras]], is a (commutative) [[Hopf algebra]]. A group object in [[Grp]] is the same thing as an abelian group (see [[Eckmann-Hilton argument]]), and a group object in [[Cat]] is the same thing as an [[internal category]] in [[Grp]], both being equivalent to the notion of [[crossed module]]. \hypertarget{in_higher_categorical_and_homotopical_contexts}{}\subsubsection*{{In higher categorical and homotopical contexts}}\label{in_higher_categorical_and_homotopical_contexts} Internalizing the notion of \emph{group} in [[higher category theory|higher categorical]] and [[homotopy theory|homotopical]] contexts yields various generalized notions. For instance \begin{itemize}% \item a [[2-group]] is a group object in [[Grpd]] \item an [[n-group]] is a group object internal to [[n-groupoid]]s \item an [[∞-group]] is a [[group object in an (∞,1)-category]]. \item a [[loop space]] is a group object in [[Top]] \item generally there is a notion of [[groupoid object in an (infinity,1)-category|group object in an (infinity,1)-category]]. \end{itemize} And the notion of [[loop space object]] and [[delooping]] makes sense (at least) in any [[(infinity,1)-category]]. Notice that the relation between group objects and deloopable objects becomes more subtle as one generalizes this way. For instance not every [[groupoid object in an (infinity,1)-category|group object in an (infinity,1)-category]] is [[delooping|deloopable]]. But every group object in an [[(infinity,1)-topos]] is. \hypertarget{weakened_axioms}{}\subsubsection*{{Weakened axioms}}\label{weakened_axioms} Following the practice of [[centipede mathematics]], we can remove certain properties from the definition of group and see what we get: \begin{itemize}% \item remove inverses to get [[monoids]], then remove the identity to get [[semigroups]]; \item or remove associativity to get [[loop (algebra)|loops]], then remove the identity to get [[quasigroups]]; \item or remove all of the above to get [[magma|magmas]]; \item or instead allow (in a certain way) for the binary operation to be partial to get [[groupoids]], then remove inverses to get [[categories]], and then remove identities to get [[semicategory|semicategories]] \item etc. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{special_types_and_classes}{}\subsubsection*{{Special types and classes}}\label{special_types_and_classes} \begin{itemize}% \item [[simple group]] \item [[finite group]], [[progroup]] \begin{itemize}% \item [[classification of finite simple groups]] \item [[sporadic finite simple groups]] \end{itemize} \item [[abelian group]] \begin{itemize}% \item [[finite abelian group]] \end{itemize} \item [[divisible group]] \item [[acyclic group]] \item [[topological group]] \begin{itemize}% \item [[discrete group]] \item [[Kac-Moody group]] \end{itemize} \item [[Lie group]] \item [[group of Lie type]] \end{itemize} \hypertarget{concrete_examples}{}\subsubsection*{{Concrete examples}}\label{concrete_examples} Standard examples of [[finite group]]s include \begin{itemize}% \item [[group of order 2]] $\mathbb{Z}_2$ \item [[symmetric group]] $\Sigma_n$ \item [[cyclic group]] \item [[braid group]] $Br_n$ \item [[Monster group]] \end{itemize} Standard examples of non-finite groups include \begin{itemize}% \item group of [[integer]]s $\mathbb{Z}$ (under [[addition]]); \item group of [[real number]]s without 0 $\mathbb{R}\setminus \{0\}$ under [[multiplication]]. \item [[Prüfer group]] \end{itemize} Standard examples of [[Lie groups]] include \begin{itemize}% \item [[orthogonal group]] \item [[unitary group]] \item [[Spin group]], [[spin{\tt \symbol{94}}c group]] \end{itemize} Standard examples of [[topological group]]s include \begin{itemize}% \item [[string group]] \end{itemize} \hypertarget{counterexamples}{}\subsubsection*{{Counterexamples}}\label{counterexamples} For more see [[counterexamples in algebra]]. \begin{enumerate}% \item A non-[[abelian group|abelian]] [[group]], all of whose [[subgroup]]s are [[normal subgroup|normal]]: \begin{displaymath} Q \coloneqq \langle a, b | a^4 = 1, a^2 = b^2, a b = b a^3 \rangle \end{displaymath} \item A [[finitely presented group|finitely presented]], infinite, [[simple group]] [[Thomson's group]] T. \item A [[group]] that is not the [[fundamental group]] of any [[3-manifold]]. \begin{displaymath} \mathbb{Z}^4 \end{displaymath} \item Two [[finite group|finite]] non-[[isomorphism|isomorphic]] groups with the same [[order profile]]. \begin{displaymath} C_4 \times C_4, \qquad C_2 \times \langle a, b, | a^4 = 1, a^2 = b^2, a b = b a^3 \rangle \end{displaymath} \item A counterexample to the converse of [[Lagrange's theorem]]. The [[alternating group]] $A_4$ has order $12$ but no [[subgroup]] of order $6$. \item A [[finite group]] in which the product of two [[commutator]]s is not a commutator. \begin{displaymath} G = \langle (a c)(b d), (e g)(f h), (i k)(j l), (m o)(n p), (a c)(e g)(i k), (a b)(c d)(m o), (e f)(g h)(m n)(o p), (i j)(k l)\rangle \subseteq S_{16} \end{displaymath} \end{enumerate} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[2-group]] \item [[n-group]] \item [[∞-group]] \item [[monoid]], [[monoid object]], \item \textbf{group}, [[group object]] \begin{itemize}% \item [[discrete group]] \begin{itemize}% \item [[order of a group]] \begin{itemize}% \item [[p-primary group]] \end{itemize} \item [[finite group]], [[profinite group]] \end{itemize} \item [[subgroup]] \begin{itemize}% \item [[torsion subgroup]] \item [[stabilizer]], [[centralizer]], [[normalizer]] \end{itemize} \item [[isogeny]] \item [[coset]], [[coset space]] \item [[abelian group]], [[anabelian group]], \begin{itemize}% \item [[group completion]] \end{itemize} \item [[group commutator]], [[commutator subgroup]], [[abelianization]] \item [[group character]] \item [[group cohomology]] \item [[group extension]] \item [[normed group]], [[bornological group]] \item [[topological group]], [[Lie group]], \item [[loop group]] \item [[cogroup]] \end{itemize} \item [[ring]], [[ring object]] \item [[automorphism group]], [[automorphism 2-group]], [[automorphism ∞-group]], \begin{itemize}% \item [[group of bisections]] \end{itemize} \item [[center]], [[center of an ∞-group]], \item [[inner automorphism group]] \item [[outer automorphism group]], [[outer automorphism ∞-group]] \item [[group presentation]] \end{itemize} [[!redirects groups]] category: group theory \end{document}