\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{group character} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Weights}{Restriction of group characters to maximal tori -- weights}\dotfill \pageref*{Weights} \linebreak \noindent\hyperlink{RelationToChernRootsAndSplittingPrinciple}{Relation to Chern roots and the splitting principle}\dotfill \pageref*{RelationToChernRootsAndSplittingPrinciple} \linebreak \noindent\hyperlink{CharactersAndFundamentalGroupsOfTori}{Characters and fundamental group of tori}\dotfill \pageref*{CharactersAndFundamentalGroupsOfTori} \linebreak \noindent\hyperlink{inner_product_and_orthogonality}{Inner product and orthogonality}\dotfill \pageref*{inner_product_and_orthogonality} \linebreak \noindent\hyperlink{in_terms_of_the_classifying_space_of_the_group}{In terms of the classifying space of the group}\dotfill \pageref*{in_terms_of_the_classifying_space_of_the_group} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{multiplicative [[character]]} of a [[group]] $G$ is a [[group homomorphism]] into the [[circle group]] $U(1)$, or more generally into the [[group of units]] $k^\times$ of a given [[ground field]] (for instance $\mathbb{C}^\times = U(1)$): \begin{displaymath} \chi \;\colon\; G \longrightarrow k^\times \,. \end{displaymath} Since $k^\times$ is an [[abelian group]], this means that group characters are in particular [[class functions]]. Dually a co-character is a homomorphism out of $k^\times$ into $G$. The collection of characters is itself an [[abelian group]] under the pointwise multiplication, this is called the \textbf{character lattice} $Hom(G,k^\times)$ of the group. Similarly the \textbf{cocharacter lattice} is $Hom(k^\times, G)$. For [[topological groups]] one considers [[continuous map|continuous]] characters. Specifically, for a [[locally compact Hausdorff]] group $G$ (often further assumed to be an [[abelian group]]), a \textbf{character} of $G$ is continuous homomorphism to the [[circle]] group $\mathbb{R}/\mathbb{Z}$. If $G$ is [[profinite group|profinite]], then this is the same as an continuous homomorphism to the [[discrete space|discrete]] group $\mathbb{Q}/\mathbb{Z}$. (See \href{http://mathoverflow.net/questions/86089/two-definitions-of-character-of-topological-groups}{MO}.) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Weights}{}\subsubsection*{{Restriction of group characters to maximal tori -- weights}}\label{Weights} Let $G$ be a [[connected topological space|connected]] [[compact Lie group]]. By the general \href{maximal+torus#Properties}{properties of maximal tori} in this case, it follows that every group character $G \to U(1)$ is already fixed by its restriction along a [[maximal torus]] inclusion \begin{displaymath} T \hookrightarrow G \to U(1) \,. \end{displaymath} Now the group characters of the [[abelian group|abelian]] maximal torus $T\simeq U(1)^n$ are [[n-tuples]] of group characters of the [[circle group]] $U(1)$, which are [[integers]] -- the \emph{[[weight (in representation theory)|weights]]}. Explicitly, under a given identification of the [[circle group]] as a [[quotient]] of the additive group of [[real numbers]] \begin{displaymath} U(1) \simeq \mathbb{R}/h \mathbb{Z} \end{displaymath} for $h \in (0,\infty)$, then the character $\lambda$ on $U(1)^n\simeq T$ labeled by $(x_1, \cdots, x_n) \in \mathbb{Z}^n$ is \begin{displaymath} \lambda(t_1,\cdots t_n) = \exp(\tfrac{i}{\hbar} \sum_{j = 1}^n t_j n_j ) \end{displaymath} (where $\hbar \coloneqq h/2\pi$ is ``[[Planck's constant]]''). (e.g. \hyperlink{Johansen}{Johansen, section 2.10}) \hypertarget{RelationToChernRootsAndSplittingPrinciple}{}\subsubsection*{{Relation to Chern roots and the splitting principle}}\label{RelationToChernRootsAndSplittingPrinciple} A group character, hence a group [[homomorphism]] $G \to U(1)$ induces a map of [[classifying spaces]] $B G \to B U(1) \simeq K(\mathbb{Z},2)$. Similarly for the restriction to the [[maximal torus]] \hyperlink{Weights}{above}, which induces \begin{displaymath} B U(1)^n \simeq B T \to B G \to B U(1)\simeq K(\mathbb{Z},2) \,. \end{displaymath} Under this identification the \hyperlink{Weights}{weights} $x_i$ of the group character, as above, are the ``[[Chern roots]]'' as the appear in the [[splitting principle]]. See there for more. \hypertarget{CharactersAndFundamentalGroupsOfTori}{}\subsubsection*{{Characters and fundamental group of tori}}\label{CharactersAndFundamentalGroupsOfTori} Write $S^1$ for the [[circle group]]. Let $T$ be a [[torus]], regarded as an [[abelian group]]. Write $[T,S^1]$ for its character group. There is a [[bilinear form]] \begin{displaymath} \pi_1(T)\otimes [T, S^1] \longrightarrow \mathbb{Z} \end{displaymath} on the [[fundamental group]] of the [[torus]] and its character group, given by sending a [[homotopy class]] $[\gamma]$ of a [[continuous map]] \begin{displaymath} \gamma \colon S^1 \longrightarrow T \end{displaymath} to the [[homotopy class]] $c(\gamma)$ of the [[composition]] with a [[character]] $c \colon T \longrightarrow S^1$ \begin{displaymath} c(\gamma) \;\colon\; S^1 \stackrel{\gamma}{\longrightarrow} T \stackrel{c}{\longrightarrow} S^1 \end{displaymath} regarded as an element $[c(\gamma)] \in \pi_1(S^1) \simeq \mathbb{Z}$. This [[bilinear form]] is non-degenerate, and hence constitutes an [[isomorphism]] \begin{displaymath} \pi_1(T) \simeq [T,S^1] \,. \end{displaymath} \hypertarget{inner_product_and_orthogonality}{}\subsubsection*{{Inner product and orthogonality}}\label{inner_product_and_orthogonality} The complex [[class functions]] on a [[finite group]] $G$ have an [[inner product]] given by \begin{displaymath} \langle \alpha, \beta\rangle \coloneqq \frac{1}{{\vert G \vert}} \underset{g \in G}{\sum} \alpha(g) \overline{\beta(g)} \,. \end{displaymath} The \emph{[[Schur orthogonality relation]]} is the statement that the [[irreducible representation|irreducible]] group characters $\{\chi_i\}_i$ form an [[orthonormal basis]] of the space of [[class functions]] under this [[inner product]]: \begin{displaymath} \langle \chi_i, \chi_j \rangle = \left\{ \itexarray{ 1 & if \; i = j \\ 0 & otherwise } \right. \end{displaymath} Such properties arise from characters occurring as [[traces]] of \href{representation+ring#relation_to_the_character_ring}{group representations}. \hypertarget{in_terms_of_the_classifying_space_of_the_group}{}\subsubsection*{{In terms of the classifying space of the group}}\label{in_terms_of_the_classifying_space_of_the_group} Consider the [[classifying space]], $B G$, of the group. Then its [[free loop space]], $Map (S^1, B G)$, has as components $G$ modulo [[conjugation]]. Then, the characters of $G$ may be expressed as the zeroth cohomology of this loop space, $H^0(\mathcal{L} B G, \mathbb{C})$. This construction is useful in the generalisation to [[transchromatic characters]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Pontryagin duality]], [[Pontryagin dual]] \item [[conjugacy class of subgroups]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles on character rings/[[representation rings]] of [[compact Lie groups]] include \begin{itemize}% \item [[Graeme Segal]], \emph{The representation ring of a compact Lie group}, Publications Math\'e{}matiques de l'Institut des Hautes \'E{}tudes Scientifiques January 1968, Volume 34, Issue 1, pp 113-128 (\href{http://archive.numdam.org/numdam-bin/fitem?id=PMIHES_1968__34__113_0}{NUMDAM}) \item Masaru Tackeuchi, \emph{A remark on the character ring of a compact Lie group}, J. Math. Soc. Japan Volume 23, Number 4 (1971), 555-705 (\href{http://projecteuclid.org/euclid.jmsj/1259849785}{Euclid}) \end{itemize} Lecture notes on characters of finite and compact Lie groups include \begin{itemize}% \item Troels Roussauc Johansen, \emph{Character Theory for Finite Groups and Compact Lie Groups} \href{http://www.math.upb.de/~johansen/character-theory.pdf}{pdf} \item Andrei Yafaev, \emph{Characters of finite groups} (\href{http://www.ucl.ac.uk/~ucahaya/Characters.pdf}{pdf}) \end{itemize} Discussion for finite groups in the more general context of [[equivariant cohomology|equivariant]] [[complex oriented cohomology theory]] ([[transchromatic character]]) is in \begin{itemize}% \item [[Michael Hopkins]], [[Nicholas Kuhn]], [[Douglas Ravenel]], \emph{Generalized group characters and complex oriented cohomology theories}, J. Amer. Math. Soc. 13 (2000), 553-594 (\href{http://www.ams.org/journals/jams/2000-13-03/S0894-0347-00-00332-5/}{publisher}, \href{http://www.math.rochester.edu/people/faculty/doug/mypapers/hkr.pdf}{pdf}) \end{itemize} [[!redirects group characters]] [[!redirects character lattice]] [[!redirects character lattices]] [[!redirects cocharacter lattice]] [[!redirects cocharacter lattices]] [[!redirects co-character lattice]] [[!redirects co-character lattices]] [[!redirects character group]] [[!redirects character groups]] \end{document}