\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{group cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{InHomotopyTypeTheory}{Fully general: in homotopy type theory}\dotfill \pageref*{InHomotopyTypeTheory} \linebreak \noindent\hyperlink{InTermsOfHomologicalAlgebra}{For an ordinary group and abelian coefficients: In terms of homological algebra}\dotfill \pageref*{InTermsOfHomologicalAlgebra} \linebreak \noindent\hyperlink{special_aspects_and_special_cases}{Special aspects and special cases}\dotfill \pageref*{special_aspects_and_special_cases} \linebreak \noindent\hyperlink{InLowDegree}{Simplicial constructions and explicit formulas in low degree}\dotfill \pageref*{InLowDegree} \linebreak \noindent\hyperlink{Degree1}{Degree-$1$ group cohomology}\dotfill \pageref*{Degree1} \linebreak \noindent\hyperlink{Degree2}{Degree-$2$ group cohomology}\dotfill \pageref*{Degree2} \linebreak \noindent\hyperlink{StructuredCohomology}{Structured group cohomology (topological groups and Lie groups)}\dotfill \pageref*{StructuredCohomology} \linebreak \noindent\hyperlink{NonabelianGroupCohomology}{Nonabelian group cohomology}\dotfill \pageref*{NonabelianGroupCohomology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{specific_examples}{Specific examples}\dotfill \pageref*{specific_examples} \linebreak \noindent\hyperlink{simple_examples}{Simple examples}\dotfill \pageref*{simple_examples} \linebreak \noindent\hyperlink{cohomology_of_}{Cohomology of $\mathbb{Z}/2\mathbb{Z}$}\dotfill \pageref*{cohomology_of_} \linebreak \noindent\hyperlink{cohomology_of___etc}{Cohomology of $U(n)$, $O(n)$, etc.}\dotfill \pageref*{cohomology_of___etc} \linebreak \noindent\hyperlink{heisenberg_cocycle}{Heisenberg cocycle}\dotfill \pageref*{heisenberg_cocycle} \linebreak \noindent\hyperlink{galileo_2cocycle}{Galileo 2-cocycle}\dotfill \pageref*{galileo_2cocycle} \linebreak \noindent\hyperlink{classes_of_examples}{Classes of examples}\dotfill \pageref*{classes_of_examples} \linebreak \noindent\hyperlink{galois_cohomology}{Galois cohomology}\dotfill \pageref*{galois_cohomology} \linebreak \noindent\hyperlink{lie_algebra_cohomology}{Lie algebra cohomology}\dotfill \pageref*{lie_algebra_cohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesOnStructuredGroupCohomology}{On structured group cohomology}\dotfill \pageref*{ReferencesOnStructuredGroupCohomology} \linebreak \noindent\hyperlink{OnTopologicalGroups}{On various topological groups}\dotfill \pageref*{OnTopologicalGroups} \linebreak \noindent\hyperlink{compact_lie_groups}{Compact Lie groups}\dotfill \pageref*{compact_lie_groups} \linebreak \noindent\hyperlink{the_unitary_groups_}{The unitary groups $U(n)$}\dotfill \pageref*{the_unitary_groups_} \linebreak \noindent\hyperlink{the_special_orthogonal_groups__}{The (special) orthogonal groups $O(n)$, $SO(n)$}\dotfill \pageref*{the_special_orthogonal_groups__} \linebreak \noindent\hyperlink{for_spingroup_stringgroup_}{For spin-group, string-group, \ldots{}}\dotfill \pageref*{for_spingroup_stringgroup_} \linebreak \noindent\hyperlink{the_exceptional_lie_groups}{The exceptional Lie groups}\dotfill \pageref*{the_exceptional_lie_groups} \linebreak \noindent\hyperlink{loop_groups_of_compact_lie_groups}{Loop groups of compact Lie groups}\dotfill \pageref*{loop_groups_of_compact_lie_groups} \linebreak \noindent\hyperlink{online_references}{Online references}\dotfill \pageref*{online_references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{group cohomology} of a [[group]] $G$ is the [[cohomology]] of its [[delooping]] $\mathbf{B}G$. This cohomology classifies [[group extensions]] of $G$. More generally, the \emph{group cohomology} of an [[∞-group]] $G$ is the [[cohomology]] of its [[delooping]] $\mathbf{B}G$ and it classifies [[∞-group extensions]] of $G$ or equivalently [[principal ∞-bundles]] over $\mathbf{B}G$ (for [[coefficients]] with trivial [[∞-action]]) or [[associated ∞-bundles]] (for coefficients with nontrivial [[∞-action]]). More in detail, if $A$ is any [[abelian group]] then a [[cocycle]] in $G$-group cohomology with [[coefficients]] in $A$ regarded as equipped with the trivial [[action]] is a morphism \begin{displaymath} c \colon \mathbf{B}G \to \mathbf{B}^n A \end{displaymath} and the [[cohomology group]] is the [[homotopy]] [[equivalence classes]] of this \begin{displaymath} H^n_{Grp}(G,A) \simeq \pi_0 \mathbf{H}(\mathbf{B}G,\mathbf{B}^n A) \,. \end{displaymath} More generally, $A$ here may be equipped with a $G$-[[action]] $\rho \colon A \times G \to A$. There is the the corresponding [[action groupoid]] or [[associated ∞-bundle]] $\mathbf{B}^n A\sslash G \to \mathbf{B}G$ and now a cocycle is a morphism $\mathbf{c} \colon \mathbf{B}G \to \mathbf{B}^n A\sslash G$ fitting into a diagram \begin{displaymath} \itexarray{ \mathbf{B}G && \stackrel{\mathbf{c}}{\longrightarrow} && \mathbf{B}^n A \sslash G \\ & \searrow &\swArrow& \swarrow \\ && \mathbf{B}G } \,. \end{displaymath} Equivalently this means that the group cohomology of $G$ with coefficients in an abelian group $A$ with $G$-[[action]] $\rho$ is the \emph{[[twisted cohomology]]} of the [[delooping]] $\mathbf{B}G$ with respect to the [[local coefficient ∞-bundle]] $\mathbf{B}^n A \sslash G$. All this generalizes to $G$ itself any [[∞-group]] and $\mathbf{B}^n A$ replaced by any $G$-[[∞-action]] $\rho \colon V \times G \to G$ in which case a group cocycle is now a morphism \begin{displaymath} \itexarray{ \mathbf{B}G && \stackrel{\mathbf{c}}{\longrightarrow} && V \sslash G \\ & \searrow &\swArrow& \swarrow \\ && \mathbf{B}G } \end{displaymath} hence a cocycle in the [[twisted cohomology]] of $\mathbf{B}G$ with coefficients in the [[local coefficient ∞-bundle]] given by the universal $\rho$-[[associated ∞-bundle|associated]] $V$-[[fiber ∞-bundle]]. In other words, the general notion of group cohomology of $G$ is just the most general notion of cohomology of $\mathbf{B}G$. This general definition we discuss below in \begin{itemize}% \item \hyperlink{InHomotopyTypeTheory}{Fully general definition in homotopy type theory}. \end{itemize} The special case where $V = \mathbf{B}^n A$ is the $n$-fold [[delooping]] of an [[abelian group]] is important for applications and also because in this case powerful tools of [[homological algebra]] can be applied and group cohomology of ordinary groups may be computed in tersm of of [[Ext]]-functors. This we discuss in \begin{itemize}% \item \hyperlink{InTermsOfHomologicalAlgebra}{Of an ordinary group with abelian group coefficients - In terms of homological algebra}. \end{itemize} Finally one can break this further down into components In \begin{itemize}% \item \hyperlink{InLowDegree}{Special case: Explicit formulas in low degree} \end{itemize} we give some standard formulas for group cohomology in low degree. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{InHomotopyTypeTheory}{}\subsubsection*{{Fully general: in homotopy type theory}}\label{InHomotopyTypeTheory} We give the general abstract definition in the language of [[(∞,1)-topos theory]] / [[homotopy type theory]]. Let $\mathbf{H}$ be an [[(∞,1)-topos]]. Let $G \in Grp(\mathbf{H})$ be a [[group object in an (∞,1)-category|group object]], an [[∞-group]], in $\mathbf{H}$. Write $\mathbf{B}G \in \mathbf{H}$ for its [[delooping]]. An [[∞-action]] $\rho : V \times G \to V$ of $G$ on a $V \in \mathbf{H}$ is equivalently, as discussed there, exhibited by a [[fiber sequence]] \begin{displaymath} \itexarray{ V &\to& V \sslash G \\ && \downarrow^{\mathrlap{\bar \rho}} \\ && \mathbf{B}G } \,. \end{displaymath} Regarded as an object in the [[slice (∞,1)-topos]] $\mathbf{H}_{/\mathbf{B}G}$ this is the [[categorical semantics]] of what in the [[syntax]] of [[homotopy type theory]] this is the [[dependent type]] \begin{displaymath} x \colon \mathbf{B}G \;\vdash \; V(x) \colon Type \,. \end{displaymath} Also, $\bar \rho$ is the \emph{[[local coefficient bundle]]} for $G$-group cohomology with [[coefficients]] in $V$ equipped with this $G$-[[∞-action]]. this means that the \emph{group cohomology} of $G$ with coefficients in $V$ is the hom in the [[slice (∞,1)-topos]] over $\mathbf{H}$ as [[base (∞,1)-topos]] \begin{displaymath} H^1_{Grp}(G,V) \coloneqq \mathbf{H}_{/\mathbf{B}G}(\mathbf{B}G, V) \,, \end{displaymath} where we denote on the right by $\mathbf{B}G$ the [[terminal object]] in the slice $\mathbf{H}_{/\mathbf{B}G}$. Notice that in $\mathbf{H}$ this is the trivial [[fiber sequence]] \begin{displaymath} \itexarray{ * &\to& \mathbf{B}G \\ && \downarrow^{\mathrlap{id}} \\ && \mathbf{B}G } \end{displaymath} This is the [[categorical semantics]] of what in the [[syntax]] of [[homotopy type theory]] is \begin{displaymath} \vdash \; \left(\prod_{x \colon \mathbf{B}G} \left(* \to V \right)\right) \colon Type \,. \end{displaymath} By the discussion at [[∞-action]], this expresses the [[invariant|∞-invariants]] of the [[conjugation action]] of $G$ on the morphisms $* \to V$ of the underlying objects. Since the action on the point is trivial, these are just the [[invariant|∞-invariants]] of $V$. \begin{prop} \label{GroupCohomologyInInfinityToposForTrivialAction}\hypertarget{GroupCohomologyInInfinityToposForTrivialAction}{} In the special case that the $G$-[[∞-action]] on $V$ is trivial, the group cohomology is equivalently just the set of connected components of the [[derived hom space|hom space]] \begin{displaymath} H_{Grp}(G,V) \simeq \pi_0 \mathbf{H}(\mathbf{B}G, V) \,. \end{displaymath} In particular if $V = \mathbf{B}^n A$ for $A$ an abelian group, this is \begin{displaymath} H^n_{Grp}(G,A) \coloneqq H_{Grp}(G,\mathbf{B}^n A) \simeq \pi_0 \mathbf{H}(\mathbf{B}G, \mathbf{B}^n A) \,. \end{displaymath} \end{prop} [[!include homotopy type representation theory -- table]] \hypertarget{InTermsOfHomologicalAlgebra}{}\subsubsection*{{For an ordinary group and abelian coefficients: In terms of homological algebra}}\label{InTermsOfHomologicalAlgebra} Let $G$ be an ordinary [[group]], specifically a [[group object]] in a [[topos]] $\mathcal{T}$ such that the [[abelian category]] $Ab(\mathcal{T})$ has [[projective object|enough projectives]]. If $G$ is an ordinary [[discrete group]] then this means that in the ambient [[set theory]] we assume the [[axiom of choice]] or ar least the [[presentation axiom]]. Write then \begin{displaymath} \mathbb{Z}[G] \in Ring \end{displaymath} for the [[group algebra]] of $G$ over the [[integers]]. Write \begin{displaymath} \mathcal{A} \coloneqq \mathbb{Z}[G] Mod \end{displaymath} for the category $\mathbb{Z}[G]$[[Mod]] of [[modules]] over $\mathbb{Z}[G]$. Notice that a [[module]] \begin{displaymath} A \in \mathbb{Z}[G] Mod \end{displaymath} is equivalently an [[abelian group]] equipped with a $G$-[[action]]. This or rather its $n$-fold [[suspension of a chain complex|suspension as a chain complex]] \begin{displaymath} A[n] \in Ch_\bullet(\mathbb{Z}[G]Mod) \end{displaymath} is the kind of [[coefficient]] for the group cohomology of $G$ to which the following statement applies. \begin{remark} \label{InvariantsByHomFunctor}\hypertarget{InvariantsByHomFunctor}{} For $A$ a $G$-[[module]], the [[invariant|invariants]] of $A$ are equivalently the $\mathbb{Z}[G]$-module homomorphisms from $\mathbb{Z}$ equipped with the trivial module structure \begin{displaymath} Invariants(A) \simeq Hom_{\mathbb{Z}[G]}(\mathbb{Z}, A) \,. \end{displaymath} This equivalence is [[natural isomorphism|natural]] and hence the contravariant [[hom functor]] is equivalently the invariants-functor \begin{displaymath} Invariants(-)\simeq Hom_{\mathbb{Z}[G]}(\mathbb{Z}, -) \,. \end{displaymath} \end{remark} By the fully general discussion \hyperlink{InHomotopyTypeTheory}{above}, group cohomology of $G$ with coefficients in some $A$ is the homotopy-version of the $G$-[[invariants]] of $A$. In the context of [[homological algebra]] and in view of remark \ref{InvariantsByHomFunctor}, this means that it is given by the [[derived functor]] of the [[hom functor]] out of the trivial $G$-module, hence by the [[Ext]]-functor: \begin{defn} \label{}\hypertarget{}{} For $A$ an [[abelian group]] equipped with a $G$-[[action]], the degree-$n$ \emph{group cohomology} of $G$ with [[coefficients]] in $A$ is the $n$th-[[Ext]]-group \begin{displaymath} H^n_{Grp}(G,A) \coloneqq Ext^n_{\mathbb{Z}[G]}(\mathbb{Z}, A) \,, \end{displaymath} where on the right $\mathbb{Z} \in \mathbb{Z}[G] Mod$ is regarded as equipped with the trivial $G$-action. \end{defn} \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[projective resolution]]} this means more explicitly the following: let $F_\bullet \stackrel{\simeq_{qi}}{\to} \mathbb{Z}$ be a [[projective resolution]] $Ch_\bullet(\mathbb{Z}[G]Mod)$ of $\mathbb{Z}$ equipped with the trivial $G$-[[action]], hence an [[exact sequence]] \begin{displaymath} \cdots \to F_3 \to F_2 \to F_1 \to F_0 \to \mathbb{Z} \to 0 \end{displaymath} of $\mathbb{Z}[G]$-[[modules]]. Let \begin{displaymath} Hom_{\mathbb{Z}[G]Mod}(F_\bullet, A) = \left[ Hom_{\mathbb{Z}[G]Mod}(F_0, A) \stackrel{d^0}{\longrightarrow} Hom_{\mathbb{Z}[G]Mod}(F_1,A) \stackrel{d^1}{\longrightarrow} Hom_{\mathbb{Z}[G]Mod}(F_2,A) \stackrel{d^2}{\longrightarrow} \cdots \right] \end{displaymath} be the corresponding [[cochain complex]]. Then the degree-$n$ group cohomology of $G$ with coefficient in $A$ is the degree-$n$ [[cochain cohomology]] of this complex \begin{displaymath} H^n_{Grp}(G,A) \simeq H^n(Hom_{\mathbb{Z}[G]Mod}(F_0, A)) \coloneqq ker(d^n)/im(d^{n-1}) \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} Give a [[normal subgroup]] $K \hookrightarrow G$ the [[invariant|invariants]]-functor may be decomposed as a [[composition]] of the functor that forms $K$-invariants with that which forms $(G/K)$-invariants for the [[quotient group]]. This decomposition gives rise to a [[Grothendieck spectral sequence]] for the group cohomology. This is called the \emph{[[Hochschild-Serre spectral sequence]]}. \end{remark} \hypertarget{special_aspects_and_special_cases}{}\subsection*{{Special aspects and special cases}}\label{special_aspects_and_special_cases} The fully general definition \hyperlink{InHomotopyTypeTheory}{above} subsumes various cases that are not always discussed on the same footing in traditional literature. For emphasis we highlight these special cases separately. \begin{itemize}% \item \hyperlink{InLowDegree}{Simplicial constructions and explicit formulas in low degree} \item \hyperlink{StructuredCohomology}{Structured group cohomology} \item \hyperlink{NonabelianGroupCohomology}{Nonabelian group cohomology} \end{itemize} \hypertarget{InLowDegree}{}\subsubsection*{{Simplicial constructions and explicit formulas in low degree}}\label{InLowDegree} We unwind the general abstract definition of group cohomology \hyperlink{InHomotopyTypeTheory}{above} in terms of constructions on [[simplicial sets]] (for cohomology of [[discrete groups]]) and [[simplicial presheaves]] (for cohomology of general [[group objects]]). $\,$ Let $G$ be a [[discrete group]] and $A$ an [[abelian group|abelian]] [[discrete group]], regarded as equipped with the trivial $G$-[[action]]. Let $n \in \mathbb{N}$. Write $\overline{W}G = G^{\times^\bullet}\in$ [[sSet]] for the [[nerve]] of the [[groupoid]] $*\sslash G$ and write $DK(A[n]) \in$ [[sSet]] for the [[image]] under the [[Dold-Kan correspondence]] of the [[chain complex]] which is the $n$-fold [[suspension of a chain complex]] of $A$. \begin{prop} \label{DiscreteGroupCohomologyBySimplicialHomotopy}\hypertarget{DiscreteGroupCohomologyBySimplicialHomotopy}{} Then the degree-$n$ group cohomology of $G$ with [[coefficients]] in $A$ is the set \begin{displaymath} H^n_{Grp}(G,A) \simeq \pi_0 sSet(\overline{W}G, DK(A[n])) \end{displaymath} of [[homomorphisms]] of [[simplicial sets]] modulo [[simplicial homotopy]]. \end{prop} \begin{proof} By prop. \ref{GroupCohomologyInInfinityToposForTrivialAction} the group cohomology is \begin{displaymath} H^n_{Grp}(G,A) \simeq \pi_0 \mathbf{H}(\mathbf{B}G, \mathbf{B}^n A) \,. \end{displaymath} By assumption the relevant [[(∞,1)-topos]] here is $\mathbf{H} =$ [[∞Grpd]], which for emphasis we might write ``[[Disc∞Grpd]]''. This is [[presentable (∞,1)-category|presented]] by the standard [[model structure on simplicial sets]], $Disc\infty Grpd \simeq L_{whe} sSet$. By the discussion at \emph{[[delooping]]} and at \emph{[[∞-group]]}, a presentation in [[sSet]], necessarily [[cofibrant object|cofibrant]], of the [[delooping]] $\mathbf{B}G \in \mathbf{H}$ is the standard [[bar construction]] \begin{displaymath} \overline{W}G = \left( \cdots \to G \times G \times G \stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\longrightarrow}} G \times G \stackrel{\longrightarrow}{\longrightarrow} G \to {*} \right) \,, \end{displaymath} which is equivalently the [[nerve]] of the [[groupoid]] $*\sslash G$. Moreover, by the discussion at \emph{[[Dold-Kan correspondence]]} a presentation of the [[Eilenberg-MacLane object]] $\mathbf{B}^n A$ is $DK(A[n]) \in sSet$, and this is a [[Kan complex]] and hence a [[fibrant object]] in the [[model category]] structure. Therefore by the discussion at \emph{[[derived hom-space]]} we have that $sSet(\overline{W}G, DK(A[n]))$ is a [[Kan complex]] which presents the required hom-$\infty$-groupoid. \end{proof} For low values of $n$ it is useful and easily possible to describe these simplicial maps explicitly. This we turn to now. \hypertarget{Degree1}{}\paragraph*{{Degree-$1$ group cohomology}}\label{Degree1} A degree-one group cocycle $c$, $[c] \in H^1_{Grp}(G,A)$ is just [[group homomorphism]] $G \to A$ -- a [[character]] of $G$. \hypertarget{Degree2}{}\paragraph*{{Degree-$2$ group cohomology}}\label{Degree2} We discuss here in detail and in components the special case of degree-2 group cohomology of a [[discrete group]] $G$ with coefficients in $A$ an [[abelian group|abelian]] [[discrete group]] and regarded as being equipped with the trivial $G$-[[action]]. \begin{prop} \label{2CocyclesAndCoboundaries}\hypertarget{2CocyclesAndCoboundaries}{} Let $G$ be a [[discrete group]] and $A$ an [[abelian group|abelian]] [[discrete group]], regarded as being equipped with the trivial $G$-[[action]]. Then a \textbf{group 2-[[cocycle]]} on $G$ with coefficients in $A$ is a [[function]] \begin{displaymath} c \colon G \times G \to A \end{displaymath} such that for all $(g_1, g_2, g_3) \in G \times G \times G$ it satisfies the [[equation]] \begin{equation} c(g_1, g_2) - c(g_1, g_2 \cdot g_3) + c(g_1 \cdot g_2, g_3) - c(g_2, g_3) = 0 \;\;\;\; \in A \label{2CocycleConditionForCentralExtension}\end{equation} (called the \textbf{group 2-cocycle condition}). For $c, \tilde c$ two such cocycles, a \textbf{[[coboundary]]} $h \colon c \to \tilde c$ between them is a [[function]] \begin{displaymath} h \colon G \to A \end{displaymath} such that for all $(g_1,g_2) \in G \times G$ the [[equation]] \begin{equation} \tilde c(g_1,g_2) = c(g_1,g_2) + (d h)(g_1,g_2) \label{Group2CoboundaryEquation}\end{equation} holds in $A$, where \begin{displaymath} (d h)(g_1, g_2) \coloneqq h(g_1 g_2) - h(g_1) - h(g_2) \end{displaymath} is the \textbf{group 2-coboundary} encoded by $h$. The degree-2 \textbf{group cohomology} is the set \begin{displaymath} H^2_{Grp}(G,A) = 2Cocycles(G,A) / Coboundaries(G,A) \end{displaymath} of [[equivalence classes]] of group 2-cocycles modulo group 2-coboundaries. This is itself naturally an [[abelian group]] under pointwise addition of cocycles in $A$ \begin{displaymath} [c_1] + [c_2] = [c_1 + c_2] \end{displaymath} where \begin{displaymath} c_1 + c_2 \colon (g_1, g_2) \mapsto c_1(g_1,g_2) + c_2(g_1, g_2) \,. \end{displaymath} \end{prop} This may be taken as the \emph{definition} of degree-2 group cohomology (with coefficients in abelian groups and with trivial action). The following proof shows how this \emph{follows} from the general simplicial presentation of prop. \ref{DiscreteGroupCohomologyBySimplicialHomotopy}. \begin{proof} By prop. \ref{DiscreteGroupCohomologyBySimplicialHomotopy} we have $H^2_{Grp}(G,A) \simeq \pi_0 sSet(\overline{W}G, DK(A[2]))$. Notice that fully explicitly the 2-[[simplices]] in $\overline{W}G$ are \begin{displaymath} (\overline{W}G)_2 = \left\{ \left. \itexarray{ && {*} \\ & {}^{g_1}\nearrow && \searrow^{g_2} \\ {*} &&\stackrel{g_1 g_2}{\longrightarrow}&& {*} } \right| g_1, g_2 \in G \right\} \,, \end{displaymath} and the 3-simplices are \begin{displaymath} (\overline{W}G)_3 = \left\{ \left. \itexarray{ {*} &&\stackrel{g_2}{\longrightarrow}&& {*} \\ \uparrow^{g_1} &&{}^{g_1 g_2}\nearrow&& \downarrow^{g_3} \\ {*} &&\stackrel{g_1 g_2 g_3}{\longrightarrow}&& {*} } \;\;\;\; \Rightarrow \;\;\;\; \itexarray{ {*} &&\stackrel{g_2}{\longrightarrow}&& {*} \\ \uparrow^{g_1} &&\searrow^{g_2 g_3}&& \downarrow^{g_3} \\ {*} &&\stackrel{g_1 g_2 g_3}{\longrightarrow}&& {*} } \right| g_1, g_2, g_3 \in G \right\} \,. \end{displaymath} Therefore a homomorphism of simplical sets $c \colon \overline{W}G \to DK(A[2])$ is in degree 2 a function \begin{displaymath} c_2 \;\; : \;\; \left( \itexarray{ && {*} \\ & {}^{g_1}\nearrow && \searrow^{g_2} \\ {*} &&\stackrel{g_2 g_1}{\to}&& {*} } \right) \;\;\; \mapsto \;\;\; \left( \itexarray{ && {*} \\ & {}^{{*}}\nearrow &\Downarrow^{c(g_1,g_2)}& \searrow^{{*}} \\ {*} &&\stackrel{{*}}{\to}&& {*} } \right) \end{displaymath} i.e. a map $c : G \times G \to K$. To be a simplicial homomorphism this has to extend to 3-[[simplices]] as: \begin{displaymath} \begin{aligned} c_3 \;\;\; &: \;\;\; \left( \itexarray{ {*} && \stackrel{g_2}{\longrightarrow} && {*} \\ \uparrow^{g_1} &&{}^{g_2 g_1}\nearrow&& \downarrow^{g_3} \\ {*} && \stackrel{g_3 g_2 g_1}{\longrightarrow} && {*} } \;\;\;\; \Rightarrow \;\;\;\; \itexarray{ {*} &&\stackrel{g_2}{\to}&& {*} \\ \uparrow^{g_1} &&\searrow^{g_3 g_2}&& \downarrow^{g_3} \\ {*} &&\stackrel{g_3 g_2 g_1}{\to}&&{*} } \right) \\ & \mapsto \left( \itexarray{ {*} &\stackrel{}{\longrightarrow} & &\stackrel{}{\longrightarrow}& {*} \\ \uparrow &\Downarrow^{c(g_1,g_2)} &\nearrow&\Downarrow^{c(g_2,g_3)}& \downarrow \\ {*} &\longrightarrow&&\longrightarrow&{*} } \;\;\;\; \stackrel{}{\Rightarrow} \;\;\;\; \itexarray{ {*} &\longrightarrow&&\longrightarrow& {*} \\ \uparrow &\Downarrow^{c(g_1,g_2 g_3)} &\searrow &\Downarrow^{c(g_2, g_3)}& \downarrow \\ {*} &\longrightarrow&&\longrightarrow&{*} } \right) \end{aligned} \,. \end{displaymath} Since there is a unique 3-cell in $DK(A[2])$ whenever the oriented sum of the $A$-labels of the boundary of the corresponding tetrahedron vanishes, the existence of the 3-cell on the right here is precisely the claimed cocycle condition. A similar argument gives the coboundaries \end{proof} We discuss now how in the computation of $H^2_{Grp}(G,A)$ one may concentrate on the \emph{normalized} cocycles. \begin{defn} \label{Normalized2Cocycle}\hypertarget{Normalized2Cocycle}{} A group 2-cocycle $c \colon G \times G \to A$, def. \ref{2CocyclesAndCoboundaries} is called \textbf{normalized} if \begin{displaymath} \forall_{g_0,g_1 \in G} \;\; \left(g_0 = e \;or\; g_1 = e \right) \Rightarrow \left( c(g_0,g_1) = e \right) \,. \end{displaymath} \end{defn} \begin{lemma} \label{2CocycleOngeisSameasOnee}\hypertarget{2CocycleOngeisSameasOnee}{} For $c \colon G \times G \to A$ a group 2-cocycle, we have for all $g \in G$ that \begin{displaymath} c(e,g) = c(e,e) = c(g,e) \,. \end{displaymath} \end{lemma} \begin{proof} The cocycle condition \eqref{2CocycleConditionForCentralExtension} evaluated on \begin{displaymath} (g^{-1}, g, e) \in G^3 \end{displaymath} says that \begin{displaymath} c(g^{-1}, g) + c(e, e) = c(g, e) + c(g^{-1}, g ) \end{displaymath} hence that \begin{displaymath} c(e,e) = c(g, e) \,. \end{displaymath} Similarly the 2-cocycle condition applied to \begin{displaymath} (e, g, g^{-1}) \in G^3 \end{displaymath} says that \begin{displaymath} c(e,g) + c(g,g^{-1}) = c(g,g^{-1}) + c(e,e) \end{displaymath} hence that \begin{displaymath} c(e,g) = c(e,e) \,. \end{displaymath} \end{proof} \begin{prop} \label{}\hypertarget{}{} Every group 2-cocycle $c \colon G \times G \to A$ is cohomologous to a normalized one, def. \ref{Normalized2Cocycle}. \end{prop} \begin{proof} By lemma \ref{2CocycleOngeisSameasOnee} it is sufficient to show that $c$ is cohomologous to a cocycle $\tilde c$ satisfying $\tilde c(e,e) = e$. Now given $c$, Let $h \colon G \to A$ be given by \begin{displaymath} h(g) \coloneqq c(g,g) \,. \end{displaymath} Then $\tilde c \coloneqq c + d c$ has the desired property, with \eqref{Group2CoboundaryEquation}: \begin{displaymath} \begin{aligned} \tilde c(e,e) & \coloneqq (c + d h)(e,e) \\ & = c(e,e) + c(e \cdot e, e \cdot e) - c(e,e) - c(e,e) \\ & = 0 \end{aligned} \,. \end{displaymath} \end{proof} \hypertarget{StructuredCohomology}{}\subsubsection*{{Structured group cohomology (topological groups and Lie groups)}}\label{StructuredCohomology} If the groups in question are not plain groups ([[group object]]s internal to [[Set]]) but groups with extra structure, such as [[topological group]]s or [[Lie group]]s, then their cohomology has to be understood in the corresponding natural context. In parts of the literature cohomology of structured groups $G$ is defined in direct generalization of the formulas above as homotopy classes of morphisms from the simplicial object \begin{displaymath} \left( \cdots G \times G\stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\longrightarrow}}G \stackrel{\longrightarrow}{\longrightarrow} * \right) \end{displaymath} to a simplicial object $N (\mathbf{B}^n A)$. This is what is described \hyperlink{InLowDegree}{above} for \emph{[[discrete groups]]}. But this does \textbf{not} in general give the right answer for structured groups: while the [[simplicial set]] $\overline{W}G = G^{\times^\bullet}$ is [[cofibrant object|cofibrant]] in the relevant model category presenting the ambient [[(∞,1)-topos]] [[Disc∞Grpd]], for $G$ a structured group the [[simplicial object]] given by the same formula is not in general already cofibrant. It needs to be further resolved, instead. Specifically, for a [[Lie group]] $G$, the object \begin{displaymath} \left( \cdots G \times G\stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\longrightarrow}}G \stackrel{\longrightarrow}{\longrightarrow} * \right) \end{displaymath} has to be considered as an [[Lie ∞-groupoid]]: an object in the [[model structure on simplicial presheaves]] over a [[site]] such as [[Diff]] or [[CartSp]]. As such it is in general \textbf{not} both cofibrant and fibrant. To that extent plain morphisms out of this object do \textbf{not} compute the correct [[derived hom-space]]s. Instead, the right definition of structured group cohomology uses the correct fibrant and cofibrant replacements. Doing requires more work. This is discussed at \begin{itemize}% \item \emph{[[Lie group cohomology]]} \end{itemize} See below at \emph{\hyperlink{ReferencesOnStructuredGroupCohomology}{References - For structured groups}} for pointers to the literature. \hypertarget{NonabelianGroupCohomology}{}\subsubsection*{{Nonabelian group cohomology}}\label{NonabelianGroupCohomology} If the coefficient group $K$ is nonabelian, its higher [[delooping]]s $\mathbf{B}^n K$ to not exist. But [[n-groupoid]]s approximating this non-existant delooping do exists. Cohomology of $\mathbf{B}G$ with coefficients in these is called [[nonabelian group cohomology]] or [[Schreier theory]]. See there for more details. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{specific_examples}{}\subsubsection*{{Specific examples}}\label{specific_examples} \hypertarget{simple_examples}{}\paragraph*{{Simple examples}}\label{simple_examples} \begin{itemize}% \item [[carrying]] \end{itemize} \hypertarget{cohomology_of_}{}\paragraph*{{Cohomology of $\mathbb{Z}/2\mathbb{Z}$}}\label{cohomology_of_} For group cohomology of the [[group of order 2]] $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ see at \emph{Groupprops}, \emph{\href{http://groupprops.subwiki.org/wiki/Group_cohomology_of_cyclic_group:Z2}{Group cohomology of cyclic group Z2}} \hypertarget{cohomology_of___etc}{}\paragraph*{{Cohomology of $U(n)$, $O(n)$, etc.}}\label{cohomology_of___etc} We consider for $G$ a [[topological group]] such as \begin{itemize}% \item the [[unitary group]] $U(n)$; \item the [[special unitary group]] $SU(n)$; \item the [[symplectic group]] $Sp(n)$ \end{itemize} the corresponding group cohomology in terms of the cohomology of the [[classifying space]]/[[delooping]] $B G$. For all $n \in \mathbb{N}$ we have \begin{displaymath} \begin{aligned} H^\bullet(BU(n);\mathbb{Z}) &= \mathbb{Z}[c_1,\cdots,c_n] \\ H^\bullet(BSU(n);\mathbb{Z}) &= \mathbb{Z}[c_2,\cdots,c_n] \\ H^\bullet(BSp(n);\mathbb{Z}) &= \mathbb{Z}[p_1,\cdots,p_n] \end{aligned} \end{displaymath} where $c_i\in H^{2i}$ and $p_i\in H^{4i}$. \hypertarget{heisenberg_cocycle}{}\paragraph*{{Heisenberg cocycle}}\label{heisenberg_cocycle} The additive group on the [[Cartesian space]] $\mathbb{R}^2$ with group operation \begin{displaymath} (a,b) + (a',b') = (a + a' , b + b') \end{displaymath} carries a degree-2 group cocycle $\omega$ with values in $\mathbb{R}$ given by \begin{displaymath} \omega : ((a_1,b_1), (a_2,b_2)) \mapsto a_1 \cdot b_2 \,. \end{displaymath} The cocycle condition for this is the identity \begin{displaymath} a_1 \cdot (b_2 + b_3) + a_2 \cdot b_3 = a_1 \cdot b_2 + (a_1 + a_2) \cdot b_3 \end{displaymath} The [[group extension]] classified by this cocycle is the [[Heisenberg group]]. \hypertarget{galileo_2cocycle}{}\paragraph*{{Galileo 2-cocycle}}\label{galileo_2cocycle} \begin{itemize}% \item [[Galileo 2-cocycle]] \end{itemize} \hypertarget{classes_of_examples}{}\subsubsection*{{Classes of examples}}\label{classes_of_examples} \hypertarget{galois_cohomology}{}\paragraph*{{Galois cohomology}}\label{galois_cohomology} The group cohomology of [[Galois groups]] is called \emph{[[Galois cohomology]]}. See there for more details. \hypertarget{lie_algebra_cohomology}{}\paragraph*{{Lie algebra cohomology}}\label{lie_algebra_cohomology} We may regard a [[Lie algebra]] as an [[infinitesimal object|infinitesimal]] group. Under this perspective [[Lie algebra cohomology]] and [[infinity-Lie algebra cohomology]] is a special case of (higher) group cohomology. See there for details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{group cohomology} \begin{itemize}% \item [[nonabelian group cohomology]], [[groupoid cohomology]] \item [[Galois cohomology]] \end{itemize} \item [[group homology]] \item [[group extension]] \begin{itemize}% \item [[Baer sum]] \end{itemize} \item [[Lie group cohomology]] \begin{itemize}% \item [[∞-group cohomology]] \item [[∞-Lie groupoid cohomology]] \end{itemize} \item [[equivariant cohomology]] \item [[Friedlander-Milnor isomorphism conjecture]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Standard textbook references on group cohomology include \begin{itemize}% \item [[Kenneth Brown]], \emph{Cohomology of Groups} , Graduate Texts in Mathematics, 87 (1972) \end{itemize} and specifically with an eye towards cohomology of [[finite groups]] \begin{itemize}% \item [[Michael Atiyah]], \emph{Characters and cohomology of finite groups}, Publications Math\'e{}matiques de l'IH\'E{}S, 9 (1961), p. 23-64 (\href{http://www.numdam.org/item?id=PMIHES_1961__9__23_0}{Numdam}) \item [[Alejandro Adem]], [[R. James Milgram]], \emph{Cohomology of Finite Groups}, Springer 2004 \end{itemize} Exposition includes \begin{itemize}% \item [[Alejandro Adem]], \emph{Lectures on the cohomology of finite groups} (\href{http://www.math.uic.edu/~bshipley/ConMcohomology1.pdf}{pdf}) \item [[Narthana Epa]], \emph{Platonic 2-groups}, 2010 (\href{http://www.ms.unimelb.edu.au/documents/thesis/Epa-Platonic2-Groups.pdf}{pdf}) \end{itemize} An introduction to group cohomology of a group $G$ as the cohomology of the [[classifying space]] $B G$ is for instance in \begin{itemize}% \item Joshua Roberts, \emph{Group cohomology: a classifying space perspective} (\href{http://www.piedmont.edu/math/jroberts/notes/qualifyingtalk.pdf}{pdf}) \item \emph{Advanced course on classifying spaces and cohomology of groups} (\href{www-irma.u-strasbg.fr/~henn/notes.ps}{ps}) \end{itemize} Discussion of the cohomology of [[discrete groups]] with abelian coefficients in terms of [[crossed modules]] instead of [[chain complexes]] (an intermediate step in the [[Dold-Kan correspondence]]) is in chapter 12 of \begin{itemize}% \item R. Brown, P. Higgins, R. Sivera, \emph{Nonabelian algebraic topology} (\href{http://www.bangor.ac.uk/%7Emas010/pdffiles/rbrsbookb-e040609.pdf}{pdf}, \href{http://www.bangor.ac.uk/~mas010/nonab-a-t.html}{web}) \end{itemize} Cohomology of [[simplicial groups]] is discussed for instance in \begin{itemize}% \item Sebastian Thomas, \emph{On the second cohomology group of a simplicial group} (\href{http://www.math.rwth-aachen.de/~Sebastian.Thomas/publications/Thomas_On_the_second_cohomology_group_of_a_simplicial_group.pdf}{pdf}) \end{itemize} Much of what is called ``[[nonabelian cohomology]]'' in the existing literature concerns the case of nonabelian group cohomology with coefficients in the [[automorphism 2-group]] $AUT(H)$ of some possibly nonabelian group $H$. This is the topic of [[Schreier theory]]. A random example for this use of terminology would be \begin{itemize}% \item Roggenkamp, Scott, \emph{Automorphisms and nonabelian cohomology} (\href{http://www.math.virginia.edu/~lls2l/automorphisms_and_nonabelian.pdf}{pdf}) \end{itemize} For a conceptual discussion of nonabelian group cohomology see \begin{itemize}% \item [[John Baez]], [[Mike Shulman]], \emph{[[Lectures on n-Categories and Cohomology]]} (\href{http://arxiv.org/abs/math/0608420}{arXiv}) \end{itemize} Group cocycles classify [[group extensions]]. This is often discussed only for 2-cocycles and extensions by ordinary groups. Higher cocycles classify extensions by [[2-group]]s and further by [[infinity-groups]]. In the context of [[crossed complexes]], which are models for \emph{strict} $\infty$-groups, this is discussed for instance in \begin{itemize}% \item [[Johannes Huebschmann]], \emph{Crossed $n$-fold extensions and group cohomology} (\href{http://dx.doi.org/10.1007/BF02566688}{web}) \end{itemize} \hypertarget{ReferencesOnStructuredGroupCohomology}{}\subsubsection*{{On structured group cohomology}}\label{ReferencesOnStructuredGroupCohomology} In \begin{itemize}% \item [[Jim Stasheff]], \emph{Continuous cohomology of groups and classifying spaces} Bull. Amer. Math. Soc. Volume 84, Number 4 (1978), 513-530 (\href{http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183540920}{web}) \end{itemize} $n$-cocycles on a topological group $G$ with values in a topological abelian group $A$ are considered as continuous maps $G^{\times n}\to A$ (p. 3 ). A definition in terms of [[derived functor|Ext-functors]] and comparison with the naive definition is in \begin{itemize}% \item David Wigner, \emph{Algebraic cohomology of topological groups} Transactions of the American Mathematical Society, volume 178 (1973)(\href{http://egg.epfl.ch/~nmonod/bonn/Wigner_1973.pdf}{pdf}) \end{itemize} A classical reference that considers the cohomology of Lie groups as topological spaces is \begin{itemize}% \item [[Armand Borel]], \emph{Homology and cohomology of compact connected Lie groups} (\href{http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063923/pdf/pnas01596-0040.pdf}{pdf}) \end{itemize} A corrected definition of topological group cohomology has been given by Segal \begin{itemize}% \item [[Graeme Segal]], \emph{Cohomology of topological groups} In Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pages 377\{387. Academic Press, London, (1970). \item [[Graeme Segal]], \emph{A classifying space of a topological group in the sense of Gel'fand-Fuks. Funkcional. Anal. i Prilozen., 9(2):48\{50, (1975).} \end{itemize} For [[reductive algebraic groups]]: \begin{itemize}% \item [[Hélène Esnault]], [[Bruno Kahn]], [[Marc Levine]], [[Eckart Viehweg]], \emph{The Arason invariant and mod 2 algebraic cycles}, J. Amer. Math. Soc. 11 (1998), 73-118 (\href{https://www.uni-due.de/~bm0032/publ/Arason.pdf}{pdf},\href{http://www.ams.org/journals/jams/1998-11-01/S0894-0347-98-00248-3/}{publisher page}) \end{itemize} \hypertarget{OnTopologicalGroups}{}\subsubsection*{{On various topological groups}}\label{OnTopologicalGroups} Some references pertaining to the [[cohomology]] of the [[classifying space]]/[[delooping]] $B G$ for $G$ a [[topological group]] ([[characteristic class]]es). \hypertarget{compact_lie_groups}{}\paragraph*{{Compact Lie groups}}\label{compact_lie_groups} Cohomology of the [[classifying space]] $B G$ for $G$ the [[topological group]] underlying a [[compact topological space|compact]] [[Lie group]]. \begin{itemize}% \item [[John Milnor]], [[Jim Stasheff]], \emph{Characteristic Classes} , Princeton University Press and University of Tokyo Press, Princeton, New Jersey, (1974). \end{itemize} \begin{itemize}% \item Mark Feshbach, \emph{Some General Theorems on the Cohomology of Classifying Spaces of Compact Lie Groups} Transactions of the American Mathematical Society Vol. 264, No. 1 (Mar., 1981), pp. 49-58 (\href{http://www.jstor.org/stable/1998409}{JSTOR}) \item [[Donald Yau]], \emph{Cohomology of unitary and symplectic groups} (\href{http://www.mathnet.ru/links/c8897bc54ec0a1a49d03ca681d53db7b/ljm147.pdf}{pdf}) \item D. Benson, [[John Greenlees]], \emph{Commutative algebra for cohomology rings of classifying spaces of compact Lie groups} (\href{http://hopf.math.purdue.edu/Benson-Greenlees/Liegroupca.pdf}{pdf}) \item [[Eric Friedlander]], Guido Mislin, \emph{Cohomology of classifying spaces of complex Lie groups and related discrete groups} Commentarii Mathematici Helvetici Volume 59, Number 1, 347-361, \end{itemize} \hypertarget{the_unitary_groups_}{}\paragraph*{{The unitary groups $U(n)$}}\label{the_unitary_groups_} For $U$ the [[unitary group]], the [[integral cohomology]] of the [[classifying space]] $B U(n)$ consists of the [[Chern class]]es, one in every even degree. \hypertarget{the_special_orthogonal_groups__}{}\paragraph*{{The (special) orthogonal groups $O(n)$, $SO(n)$}}\label{the_special_orthogonal_groups__} The cohomology of $B O(n)$ ([[orthogonal group]]) and $B SO(n)$ ([[special orthogonal group]]) with coefficients in $\mathbb{Z}_2$ is discussed in (\hyperlink{MilnorStasheff}{MilnorStasheff, 1974}). The cohomology of $B O(n)$ with coefficients in $\mathbb{Z}$ and $\mathbb{Z}_{2 m}$ was found in \begin{itemize}% \item Emery Thomas , \emph{On the cohomology of the real Grassman complexes and the characteristic classes of the $n$-plane bundle} , Trans. Amer. Math. Soc. 96 (1960), 67--89. \end{itemize} The [[ring]]-structure on the cohomology with integer coefficients was given in \begin{itemize}% \item E. Brown (Jr.), \emph{The cohomology of $B SO(n)$ and $B O(n)$ with integer coefficients} Proc. AMS Soc. 85 (1982) \item Mark Feshbach, \emph{The integral cohomology rings of the classifying spaces of $O(n)$ and $SO(n)$, Indiana Univ. Math. J. 32 (1983), 511--516.} \end{itemize} For [[twisted cohomology|local coefficients]] see \begin{itemize}% \item [[Martin ?adek]], \emph{The cohomology of $B O(n)$ with twisted integer coefficients}, J. Math. Kyoto Univ. 39 (1999), no. 2, 277--286 (\href{http://projecteuclid.org/euclid.kjm/1250517912}{Euclid}) \item Richard Lastovecki, \emph{Cohomology of $B O(n_1) \times \cdots \times B O(n_m)$ with local integer coefficients} Comment.Math.Univ.Carolin. 46,1 (2005)21--32 (\href{http://www.emis.de/journals/CMUC/pdf/cmuc0501/lastovec.pdf}{pdf}) \end{itemize} \hypertarget{for_spingroup_stringgroup_}{}\paragraph*{{For spin-group, string-group, \ldots{}}}\label{for_spingroup_stringgroup_} The [[Whitehead tower]] of the [[orthogonal group]] starts out with [[fivebrane group]] $\to$ [[string group]] $\to$ [[spin group]] $\to$ [[special orthogonal group]] $\to$ [[orthogonal group]] Group cohomology of the [[spin group]] (cohomology of the [[classifying space]] $B Spin$) is discussed in \begin{itemize}% \item Emery Thomas, \emph{On the cohomology groups of the classifying space for the stable spinor group} , Bol. Soc. Mex. (1962), 57 - 69 \item Masana Harada, Akira Kono, \emph{Cohomology mod 2 of the classifying space of $Spin^c(n)$} Publications of the Research Institute for Mathematical Sciences archive Volume 22 Issue 3, Sept. (1986) (\href{http://dl.acm.org/citation.cfm?id=23393}{web}) \end{itemize} Group cohomology of the [[string group]] (cohomology of the [[classifying space]] $B String$) is discussed in \begin{itemize}% \item \emph{On the integral cohomology of the seven-connective cover of B O} Bull. Austral. Math. Soc. Vol 38 (1988) (\href{http://journals.cambridge.org/download.php?file=%2FBAZ%2FBAZ38_01%2FS0004972700027179a.pdf&code=8374f17b7aa6ffb83f42f347c677729f}{pdf}) \end{itemize} \hypertarget{the_exceptional_lie_groups}{}\paragraph*{{The exceptional Lie groups}}\label{the_exceptional_lie_groups} Cohomology of [[classifying space]]s of [[exceptional Lie group]]s. \begin{itemize}% \item Akira Kono, Mamoru Mimura, \emph{Cohomology mod 3 of the classifying space of the Lie group $E_6$} , Math. Scand. 46 (1980) (\href{http://www.mscand.dk/article.php?id=2533}{pdf}) \end{itemize} \hypertarget{loop_groups_of_compact_lie_groups}{}\paragraph*{{Loop groups of compact Lie groups}}\label{loop_groups_of_compact_lie_groups} \begin{itemize}% \item Daisuke Kishimoto, Akira Kono, \emph{Cohomology of the classifying spaces of loop groups} (\href{http://www.math.kyoto-u.ac.jp/preprint/2004/13kishimoto.pdf}{pdf}) \end{itemize} \hypertarget{online_references}{}\subsubsection*{{Online references}}\label{online_references} Some of the above materiel is taken from discussion at \begin{itemize}% \item MO, \emph{\href{http://mathoverflow.net/questions/75389/group-cohomology-of-compact-lie-group-with-integer-coeffient}{Group cohomology of compact Lie group with integer coeffient}} \end{itemize} [[!redirects group cocycle]] [[!redirects group cocycles]] \end{document}