\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{group object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_internal_group_objects}{In terms of internal group objects}\dotfill \pageref*{in_terms_of_internal_group_objects} \linebreak \noindent\hyperlink{InTermsOfPresheavesOfGroups}{In terms of presheaves of groups}\dotfill \pageref*{InTermsOfPresheavesOfGroups} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{theory}{Theory}\dotfill \pageref*{theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak A \emph{group object} in a [[category]] $C$ is a [[group]] [[internalization|internal]] to $C$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_terms_of_internal_group_objects}{}\subsubsection*{{In terms of internal group objects}}\label{in_terms_of_internal_group_objects} A \textbf{group object} or \textbf{internal group} in a category $C$ with binary [[product]]s and a [[terminal object]] $*$ is an object $G$ in $C$ and arrows \begin{displaymath} 1:* \to G \end{displaymath} (the unit map) \begin{displaymath} (-)^{-1}:G\to G \end{displaymath} (the inverse map) and \begin{displaymath} m:G\times G \to G \end{displaymath} (the multiplication map), such that the following diagrams commute: \begin{displaymath} \itexarray{ G\times G\times G & \stackrel{id\times m}{\to} & G\times G\\ m\times id\downarrow && \downarrow m \\ G\times G & \stackrel{m}{\to} &G } \end{displaymath} (expressing the fact multiplication is associative), \begin{displaymath} \itexarray{ G & \stackrel{(1,id)}{\to} & G\times G\\ (\id,1)\downarrow &\underset{=}{\searrow}& \downarrow m \\ G\times G & \stackrel{m}{\to} &G } \end{displaymath} (telling us that the unit map picks out an element that is a left and right identity), and \begin{displaymath} \itexarray{ G & \stackrel{(id,(-)^{-1})\circ\Delta}{\to} & G\times G\\ ((-)^{-1},id)\circ\Delta\downarrow & \underset{1}{\searrow}& \downarrow m \\ G\times G & \stackrel{m}{\to} &G } \end{displaymath} (telling us that the inverse map really does take an inverse), where we have let $1: G \to G$ denote the composite $G \to * \stackrel{1}{\to} G$ and $\Delta$ is a [[diagonal morphism]]. Even if $C$ doesn't have \emph{all} binary products, as long as products with $G$ (and the terminal object $*$) exist, then one can still speak of a group object $G$ in $C$. \hypertarget{InTermsOfPresheavesOfGroups}{}\subsubsection*{{In terms of presheaves of groups}}\label{InTermsOfPresheavesOfGroups} \begin{prop} \label{}\hypertarget{}{} Given a [[cartesian monoidal category]] $C$, the category of internal groups in $C$ is equivalent to the [[full subcategory]] of the category of [[presheaves]] of [[groups]] $Grp^{C^{op}}$ on $C$, spanned by those presheaves whose underlying set part in $Set^{C^{op}}$ is [[representable functor|representable]]. \end{prop} This is a special case of the general theory of \emph{[[structures in presheaf toposes]]}. In other words, the [[forgetful functor]] from $Grp^{C^{op}}$ to $Set^{C^{op}}$ (obtained by composing with the [[forgetful functor]] [[Grp]] $\to$ [[Set]]) creates representable group objects from representable objects. An object $G$ in $C$ with an internal group structure is a diagram \begin{displaymath} \itexarray{ && Grp \\ & {}^{(G,\cdot)}\nearrow & \downarrow \\ C^{op} &\stackrel{Y(G)}{\to}& Set } \,. \end{displaymath} This equips each object $S \in C$ with an ordinary group $(G(S), \cdot)$ structure, so in particular a product operation \begin{displaymath} \cdot_S : G(S) \times G(S) \to G(S) \,. \end{displaymath} Moreover, since morphisms in $Grp$ are group homomorphisms, it follows that for every morphism $f : S \to T$ we get a commuting diagram \begin{displaymath} \itexarray{ G(S) \times G(S) &\stackrel{\cdot_S}{\to}& G(S) \\ \uparrow^{G(f)\times G(f)} && \uparrow^{G(f)} \\ G(T) \times G(T) &\stackrel{\cdot_T}{\to}& G(T) } \end{displaymath} Taken together this means that there is a morphism \begin{displaymath} Y(G \times G) \to Y(G) \end{displaymath} of representable presheaves. By the [[Yoneda lemma]], this uniquely comes from a morphism $\cdot : G \times G \to G$, which is the product of the group structure on the object $G$ that we are after. etc. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{itemize}% \item A group object in [[Set]] is a [[group]]. \item A group object in [[Top]] is a [[topological group]]. \item A group object in [[Ho(Top)]] is an [[H-group]]. \item A group object in [[Diff]] is a [[Lie group]]. \item A group object in [[SDiff]] is a [[supergroup|super Lie group]]. \item A group object in [[Grp]] is an [[abelian group]] (using the [[Eckmann-Hilton argument]]). \item A group object in [[Ab]] is an abelian group again. \item A group object in [[Cat]] is a strict [[2-group]]. \item A group object in [[Grpd]] is a strict $2$-group again. \item A group object in [[CRing]]$^{op}$ is a commutative [[Hopf algebra]]. \item A group object in a [[functor category]] is a [[group functor]]. \item A group object in [[schemes]] is a [[group scheme]]. \item A group object in an [[opposite category]] is a [[cogroup object]]. \item A group object in [[stacks]] is a [[group stack]]. \end{itemize} \hypertarget{theory}{}\subsection*{{Theory}}\label{theory} The basic results of elementary group theory apply to group objects in any category with finite products. (Arguably, it is precisely the \emph{elementary} results that apply in any such category.) The theory of group objects is an example of a [[Lawvere theory]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monoid]], [[monoid object]], [[monoid object in an (∞,1)-category]] \item [[group]], \textbf{group object}, [[group object in an (∞,1)-category]] \item [[groupoid]], [[groupoid object]], [[groupoid object in an (∞,1)-category]] \item [[infinity-groupoid]], [[infinity-groupoid object]], [[groupoid object in an (∞,1)-category]] \item [[ring]], [[ring object]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Saunders MacLane]], chapter III, section 6 in \emph{[[Categories for the Working Mathematician]]}, Springer (1971) \end{itemize} [[!redirects group objects]] [[!redirects internal group]] [[!redirects internal groups]] [[!redirects inner group]] [[!redirects inner groups]] [[!redirects group object]] [[!redirects group objects]] [[!redirects abelian group object]] [[!redirects abelian group objects]] \end{document}