\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{group scheme} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cartier_duality}{Cartier duality}\dotfill \pageref*{cartier_duality} \linebreak \noindent\hyperlink{dieudonn_module}{Dieudonn\'e{} module}\dotfill \pageref*{dieudonn_module} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{group scheme} is a [[group object]] in the category of [[schemes]] (or in a category of \emph{some} schemes as for instance that of schemes over a fixed base scheme); in particular a group scheme is a [[group functor]]. As explained at [[group object]] there are two equivalent ways of realizing this: One way is to define it as a functor $G:C Ring\to Set$ equipped with a transformation $m:G\times G\to G$ satisfying the properties spelled out at [[group object]]. The other way is to define it as a functor $Sch\to Grp$ from the category of schemes to that of (discrete) groups whose composition with the forgetful functor $Grp\to Set$ is representable. Grothendieck emphasized the study of schemes over a fixed base scheme. Following this idea in the [[functor of points]] formalism, a group scheme over a scheme $X$ is a functor \begin{displaymath} G: (Sch /X)^{op} \to Grp \end{displaymath} A \textbf{morphism of group schemes} $f:G\to H$ is a morphism of schemes that is a group homomorphism on any choice of values of points. This is more easily stated by saying that a morphism of group schemes must be a [[natural transformation]] between the [[functor of points]]; i.e. $f$ is required to be a natural transformation of functors with values in the category $Grp$ of groups (instead of with values in Set); an equivalent way to state this is that $f$ needs to satisfy $f m=m(f\times f)$ if $m:G\times G\to G$ denotes the group law on $G$. This construction generalizes to [[ind-object|ind-schemes]] (as for example [[formal scheme|formal schemes]]) to that of a [[formal group scheme]]. \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} Let $k$ be some base field. We start with the \textbf{constant group scheme} $E_k$ defined by some classical group $E$ which gives in every component just the group $E$. Next we visit the notion of \textbf{\'e{}tale group scheme}. This is not itself constant but becomes so by scalar extension to the separable closure $k_sep$ of $k$. The importance of \'e{}tale affine is that the category of them is equivalent to that of [[nLab:Galois module|Galois modules]] by $E\mapsto E \otimes_k k_sep=\cup_{K/k \,sep\,fin} E(K)$ So far these examples `'do nothing'` with the (multiplicative and additive) structure of the ring in which we evaluate our group scheme. But the next instances do this: We define the \textbf{additive-} and the \textbf{[[multiplicative group]] scheme} by $\alpha_k: R\mapsto R^+$ and $\mu_k:R\mapsto R^\times$ sending a $k$-ring to to its underlying additive- and multiplicative group, respectively. These have the `'function rings'` $O_k(\alpha_k)=k[T]$ and $O_(\mu_k)=K[T,T^{-1}]$ and since $(O_k\dashv Spec_k):k.Ring\stackrel{Spec_k}{\to} k.Aff$ we note that our basic building blocks $\alpha_k$ and $\mu_k$ are in fact representable $k$-functors aka. \textbf{affine group schemes}. We observe that we have $k.Gr(\mu_k,\alpha_k)=0$ and call in generalization of this property any group scheme $G$ satisfying $k.Gr(G,\alpha_k)=0$ \textbf{multiplicative group scheme}. (We could have also the idea to call $G$ satisfying $k.Gr(\mu_k,G)=0$ `'additive'` but I didn't see this.) By some computation of the hom spaces $k.Gr(G,\mu_k)$ involving co- and birings we see that these are again always values of a representable $k$-functor $D(G)(-):=(-).Gr(G\otimes_k (-),\mu_{(-)})$; this functor we call the \textbf{[[Cartier dual]] of $G$}. If for example $G$ is a \textbf{[[finite group scheme]]} $D(G)$ also is, and moreover $D$ is a contravariant autoequivalence ('`duality'') of $k.fin.comm.Grp$; in general it is also a \textbf{duality} in some specific sense. By taking the Cartier dual $D(E_k)$ of a constant group scheme we obtain the notion of a \textbf{diagonlizable group scheme}. To justify this naming we compute some value $D(E_k)(R)=hom_{Grp}(E_k\otimes_k R, \mu_R)\simeq hom_{Grp}(E_k,R^\times)\simeq hom_Alg(k[E_k],R)$ where $k[E_k]$ denotes the [[group algebra]] of $E_k$ and the last isomorphism is due to the universal property of group rings; we observe that the last equality tells us that $G=Spec\,k[E_k]$ and recall that a $\zeta\in E_k\subset k[E_k]$ is called a [[nLab:character]] of $G$ (and one calls a group generated by these `'diagonalizable''). Revisiting the condition $k.Gr(H,\alpha_k)=0$ by which we defined multiplicative group schemes and considering a group scheme $G$ satisfying this condition for all \textbf{sub group-schemes} $H$ of $G$ we arrive at the notion of \textbf{unipotent group scheme}. By the structure theorem of \textbf{decomposition of affine groups} we can proof that $G$ is unipotent iff the \textbf{completion of group schemes} (which gives us-by the usual technic of [[nLab:completion]]- a \textbf{formal (group) scheme} $\hat X$ if $X$ is a group scheme) of the Cartier dual of $G$, i.e. $\hat D(G)$ is a \textbf{connected formal group scheme} also called \textbf{local group scheme} since a local group scheme $Q=Spec_k A$ is defined to be the [[nLab:spectrum]] of a local ring; this requirement in turn is equivalent to $Q(K)=hom(A,K)=\{0\}$ hence the first name `'connected''. There is also a connection between connected and \'e{}tale schemes: For any formal group scheme there is an essentially unique [[nLab:exact sequence]] \begin{equation} 0\to G^\circ\to G\to \pi_0(G)\to 0 \label{connectedetaledecomposition}\end{equation} where $G^\circ$ is connected and $\pi_0(G)$ is \'e{}tale. Such decomposition in exact sequences we obtain in further cases: $0\to G^{ex}\to G\to G_{ex}\to 0$ where \newline | finite | [[nLab:infinitesimal object|infinitesimal]] | \'e{}tale | splits if $k$ is perfect |p.35 | | [[nLab:ring spectrum|affine]] | multiplicative | [[unipotent group scheme|unipotent | splits if $k$ is perfect | p.39 | | connected | $G_{red}$ is [[nLab:smooth scheme|smooth]] | $G/G_{red}$ is infinitesimal |p.43 | | where a \textbf{smooth (group) scheme} is defined to be the spectrum of a finite dimensional (over k) [[nLab:power series]] algebra, a (group) scheme is called \textbf{finite (group) scheme} if we restrict in all necessary definitions to $k$-ring which are finite dimensional $k$-[[nLab:vector space|vector spaces]], and a (group) scheme is called \textbf{infinitesimal (group) scheme} if it is finite and local. If moreover $k$ is a perfect field any finite affine $k$-group $G$ is in a unique way the product of four subgroups $G=a\times b\times c\times d$ where $a\in Fem_k$ is a formal \'e{}tale multiplicative $k$ group, $b\in Feu_k$ is a formal \'e{}tale unipotent $k$ group, $c\in Fim_k$ is a formal infinitesimal multiplicative $k$ group, and $d\in Fem_k$ is a infinitesimal unipotent $k$ group. If we now shift our focus to colimits- or more generally to codirected systems of [[finite group schemes]], in particular the notion of \textbf{[[p-divisible group]]} is an extensively studied case because the $p$-divisible group $G(p)$ of a group scheme encodes information on the \textbf{[[p-torsion]]} of the group scheme $G$. To appreciate the definition of $G(p)$ we first recall that for any group scheme $G$ we have the [[nLab:Frobenius morphism|relative Frobenius morphism]] $F_G:G\to G^{(p)}$ to distinguish it from the absolute Frobenius morphism $F^{abs}_G:G\to G$ which is induced by the Frobenius morphism of the underlying ring $k$. The passage to the relative Frobenius is necessary since in general it is not true that the absolute Frobenius respects the base scheme. Now we define $G[p^n]:=ker\; F^n_G$ where the kernel is taken of the Frobenius iterated $n$-times and the codirected system \begin{displaymath} G[p]\stackrel{p}{\to}G[p^2]\stackrel{p}{\to}\dots \stackrel{p}{\to}G[p^{n}]\stackrel{p}{\to}G[p^{n+1}]\stackrel{p}{\to}\dots \end{displaymath} is then called the $p$-divisible group of $G$. As \textbf{cardinality} (in group theory also called \textbf{rank}) of this objects we have $card(G[p^j])=p^{j\cdot h}$ for some $h\in \mathbb{N}$; this $h$ is called the \textbf{[[height of a group scheme|height]] of $G$}. Moreover we have (p1) the $G[p^i]$ are finite group schemes (we assumed this by definition), (p2) the sequences of the form $0\to ker\, p^j\xhookrightarrow{\iota_j} ker p^{j+k}\stackrel{p^j}{\to}ker p^k\to 0$ are exact, (p3) $G=\cup_j ker\, p^j\cdot id_G$ and one can show that if we start with any codirected system $(G_i)_{i\in \mathbb{N}}$ satisfying (p1)(p2) we have that $colim_i G_i$ satisfies (p3) and $ker( F^n_G)\simeq G_n$ - in other words the properties (p1)(p2) give an equivalent \textbf{alternative definition of $p$-divisible groups} (and (p3) leads some authors to `'identify'` $G$ and $G(p)$). Basic examples of $p$-divisible groups are $(\mathbb{Q}_p/\mathbb{Z}_p)^h_k$ which is (up to isomorphism) the unique example of a constant $p$-divisible group of height $h$ and $A(p)$ where $A$ is a commutative [[nLab:variety]] with a group law (aka. \textbf{algebraic group}). $A(p)$ is called \textbf{[[nLab:the Barsotti-Tate group of an abelian variety]]}; if the dimension of $A$ is $g$ the height of $A(p)$ is $2g$. Now, what about decomposition of $p$-divisible groups? We have even one more equivalent \textbf{`'exactness'` characterization of $p$-divisible formal groups} by: $G$ is $p$-divisible iff in the connected-\'e{}tale decomposition given by the exact sequence displayed in (1) we have ,($p1^\prime$), $\pi_0(G)(\overline k)\simeq (\mathbb{Q}_p/\mathbb{Z}_p)^r$ for some $r\in \mathbb{N}$ and ,($p2^\prime$), $G^\circ$ is \textbf{of finite type} (= the spectrum of a Noetherian ring), smooth, and the kernel of its [[Verschiebung morphism]] (this is the left adjoint the Frobenius morphism) is finite. Of course this characterization of $p$-divisiblity by exact sequences gives rise to propositions on dimensions and subgroups of $p$-divisible groups. (\ldots{}) In cases where $k$ is a field of prime [[nLab:characteristic]] $p$, there is some special $k$-functor which is a group functor and even a ring functor (a $k$-functor equipped with a ring structure) - namely the functor $W:k.Ring. comm\to \lambda.Ring\hookrightarrow Set$ whose image is the category $\Lambda$ of \textbf{[[nLab:lambda ring|lambda-rings]]}; the objects $W(R)$ of $\Lambda$ are also called \textbf{[[nLab:Witt vectors]]} since they are infinite sequences of elements of $R$ (this justifies at least `'vectors''). $W$ possesses a left adjoint $(V\dasv W)$ forgetting the lambda-structure and the [[couniversal property]] associated to this adjunction states that for a $k$-ring $R$ we have that $W(R)$ is the couniversal object such that all so called \textbf{Witt polynomials} $w_n(x_0,\dots x_n):=x_0^{p^n}+p\cdot x_1^{p^{n-1}}+p^2 \cdot x_2^{p^{n-2}}+\dots+p^n\cdot x_n$ are ring homomorphisms. For this special $k$-group $W$ we revisit some construction we have done above for general $k$-groups: we firstly make the eponymous remark that the Verschiebung morphism $V_W(R):(a_1,a_2,\dots,a_n,\dots)\mapsto (0,a_1,a_2,\dots,a_n,\dots)$ is given by shifting (German: Verschiebung) one component to the right. By abstract nonsense we have also Frobenius. An important proposition concerning the ring of Witt vectors is that for a perfect field $k$, $W(k)$ is a \textbf{discrete valuation ring}. The next construction we visit with $W(R)$ is \textbf{Cartier duality of finite Witt groups} (here we forget that $W(R)$ is even a ring): For this note that the \textbf{ring of finite Witt vectors $W_fin(R)$} is an ideal in $W(R)$ and we have Frobenius and Verschiebung also in this truncated case; more precisely we have for each $n$ a Frobenius $F_{W_n}:W_n\to W_n$ where $W_n(R)$ denotes the \textbf{ring of Witt vectors of length $n$}. With this notation we find $ker(F^m_{W_n})\simeq D(ker(F^n_{W_n})$. Since $W(k)$ is a ring we can ask of its modules in general; however there is in particular one $W(k)$-module of interest which is called the \textbf{Dieudonn\'e{} module $M(G)$ of $G$}. It can be defined in two equivalent ways: 1. as a $W(k)$-module $M$ equipped with two endomorphisms of $F$ and $V$ satisfying the `'Witt-Frobenius identities'` (WF1): $FV=VF=p$ (WF2): $Fw=w^{(p)} F$ (WF3): $w V=V w^{(p)}$ or 2. as a left module over the \textbf{Dieudonn\'e{} ring} which is the (noncommutative ring) generated by $W(k)$ and two variables $F$ and $V$ satisfying (WF1)(WF2)(WF3) in which case every element of $D_k$ can uniquely be written as a finite sum \begin{displaymath} \sum_{i\gt 0} a_{-i} V^i + a_0 + \sum_{i\gt 0} a_i F^i \end{displaymath} (\ldots{}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For a field $k$ the terminal $k$-scheme $Sp_k k$ is a group scheme in a unique way. \item An [[affine scheme|affine]] group scheme. Affine group [[variety|varieties]] are called [[linear algebraic group|linear algebraic groups]]. \item Complete group varieties are called [[abelian variety|abelian varieties]]. \item Given any group $G$, one can form the [[constant group scheme]] $G_X$ over $X$. \item [[etale group scheme]] is the spectrum of a commutative [[Hopf algebra]]. In this case the multiplication- resp. inversion- reps. unit map are given by [[comultiplication]] reps. [[antipodism]] resp. [[counit]] in the Hopf algebra. \item The functor $\mu:=\mathbb{G}_m$ is a group scheme given by $\mathbb{G}_m(S)=\Gamma(S, \mathcal{O}_S)^\times$. A scheme is sent to the invertible elements of its global functions. This group scheme is called \emph{the multiplicative group scheme}. In context of [[p-divisible group|p-divisible groups]] the kernels of the $k$-group scheme endomorphisms of $\mathbb{G}_m$ defined by $(-)^n:x\mapsto x^n$ for an integer $n$ are of particular interest. These kernels give the group schemes of the $n$-th [[root of unity]]. \item [[diagonalizable group scheme]]. Note that the multiplicative group scheme is diagonalizable. \item [[multiplicative group scheme]] also called \emph{group scheme of multiplicative type}. Every diagonalizable group scheme is in particular of multiplicative type. \item The \emph{[[additive group]] scheme} assigns to a ring its additive group. Also here the kernels of the powering-by-n map are of interest. These kernels give the group schemes of the $n$-th [[nilpotent object|nilpotent element]]. \item Group schemes can be constructed by [[restriction of scalars]]. \item The functor $\alpha:=\mathbb{G}_a$ is a group scheme given by $\mathbb{G}_a(S)=\Gamma(S, \mathcal{O}_S)$ the additive group of the ring of global functions. This group scheme is called \emph{the additive group scheme}. \item [[connected group scheme]] (is synonymous to [[local group scheme]]) \item [[unipotent group scheme]] (these are [[Cartier duality|Cartier duals]] of local group schemes) \item the kernel of any group scheme morphism is a group scheme. \item Every [[algebraic group]] is in particular a group scheme. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{cartier_duality}{}\subsubsection*{{Cartier duality}}\label{cartier_duality} (main article: [[Cartier duality]]) Suppose now that $G$ is a finite flat commutative group scheme (over $X$). The \textbf{Cartier dual} of $G$ is given by the functor $G^D(S)=Hom (G\otimes S, \mathbb{G}_m \otimes S)$. The Hom is taken in the category of group schemes over $S$. For example, $\alpha_p^D\simeq \alpha_p$. \hypertarget{dieudonn_module}{}\subsubsection*{{Dieudonn\'e{} module}}\label{dieudonn_module} (main article: [[Dieudonné module]]) There are certain correspondences (\hyperlink{thmAcu}{Theorem Acu}--\hyperlink{thmFftc}{Theorem Fftc}) between certain categories of group schemes and certain categories of Dieudonn\'e{} modules. \begin{defn} \label{}\hypertarget{}{} A \emph{Dieudonn\'e{} module} is a module over the [[Dieudonné ring]] $D_k$ of a field $k$ of prime [[characteristic]] $p$. \end{defn} \begin{defn} \label{}\hypertarget{}{} The Dieudonn\'e{} ring of $k$ is the ring generated by two objects $F,V$ subject to the relations \begin{displaymath} FV=VF=p \end{displaymath} \begin{displaymath} Fw=w^\sigma F \end{displaymath} \begin{displaymath} w V=V w^\sigma \end{displaymath} where \begin{displaymath} \sigma:\begin{cases} W(k)\to W(k) \\ (w_1,w_2,\dots)\mapsto (w_1^p,w_2^p,\dots) \end{cases} \end{displaymath} denotes the endomorphism of the [[Witt ring]] $W(k)$ of $k$ given by raising each component of the [[Witt vectors]] to the $p$-th power; this means that $\sigma$ is component-wise given by the [[Frobenius endomorphism]] of the file $k$. \end{defn} The Dieudonn\'e{} ring is a $\mathbb{Z}$-[[graded ring]] where the degree $n$-part is the $1$-[[dimension|dimensional]] [[free object|free module]] generated by $V^{-n}$ if $n\lt 0$ and by $F^n$ if $n\gt 0$ \begin{theorem} \label{thmAcu}\hypertarget{thmAcu}{} (\hyperlink{Demazure}{III.5}, $Acu_k\simeq Tor_V D_kMod$) (see also [[Dieudonné module]] for more details concerning this theorem) Let $k$ be a [[perfect field]] of prime characteristic $p$. Since $k$ is perfect Frobenius is an automorphism. On the left we have the category of [[affine scheme|affine]] commutative [[unipotent group scheme|unipotent group schemes]]. On the right we have the category of all [[Dieudonné ring|D\_k]][[Dieudonné module|-modules]] of $V$-torsion. The (contravariant) equivalence is given by \begin{displaymath} M:\begin{cases} Acu_k&\to& Tor_V D_kMod \\ G&\mapsto&colim_n Acu_k(G,W_{nk}) \end{cases} \end{displaymath} where we recall that how the colimit of the hom space can be multiplied by the generators of the [[Dieudonné ring]]. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} (\hyperlink{Demazure}{III.6}, $Feu_k\simeq Tor_V D_kMod$) \end{theorem} \begin{theorem} \label{}\hypertarget{}{} (\hyperlink{Demazure}{III.6}, $Fiu_k\simeq Tor_F D_kMod$) \end{theorem} \begin{theorem} \label{}\hypertarget{}{} (\hyperlink{Demazure}{III.8}, $Torf_p\simeq (fin W(k) Mod,F,V)$) \end{theorem} \begin{theorem} \label{thmFftc}\hypertarget{thmFftc}{} (\hyperlink{Demazure}{III.9}, $Fftc\simeq \hat D_k Mod_{fin.len.quot}$) \end{theorem} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[abelian group scheme]] \item [[dual abelian group scheme]] \item [[spectral group scheme]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item M. Artin, J. E. Bertin, M. Demazure, P. Gabriel, A. Grothendieck, M. Raynaud, J.-P. Serre, \emph{Schemas en groupes}, i.e. SGA III-1, III-2, III-3 \item Michel Demazure, [[Pierre Gabriel|P. Gabriel]], \emph{Groupes algebriques}, tome 1 (later volumes never appeared), Mason and Cie, Paris 1970 \item Michel [[Demazure, lectures on p-divisible groups]] \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \item W. Waterhouse, \emph{Introduction to affine group schemes}, GTM 66, Springer 1979. \item D. Mumford, \emph{Abelian varieties}, 1970, 1985. \item J. C. Jantzen, \emph{Representations of algebraic groups}, Acad. Press 1987 (Pure and Appl. Math. vol 131); 2nd edition AMS Math. Surveys and Monog. 107 (2003; reprinted 2007) \end{itemize} [[!redirects group scheme]] [[!redirects group schemes]] [[!redirects Cartier dual]] [[!redirects Cartier duals]] [[!redirects group schemes]] [[!redirects height of a group scheme]] \end{document}