\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{groupal model for universal principal infinity-bundles} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{OrdinaryGroups}{For ordinary groups}\dotfill \pageref*{OrdinaryGroups} \linebreak \noindent\hyperlink{for_strict_2groups}{For strict 2-groups}\dotfill \pageref*{for_strict_2groups} \linebreak \noindent\hyperlink{for_groups}{For $\infty$-Groups}\dotfill \pageref*{for_groups} \linebreak \noindent\hyperlink{for_groups_in_an_arbitrary_topos}{For $\infty$-groups in an arbitrary $(\infty,1)$-topos}\dotfill \pageref*{for_groups_in_an_arbitrary_topos} \linebreak \noindent\hyperlink{for_lie_groups}{For $\infty$-Lie groups}\dotfill \pageref*{for_lie_groups} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $G$ a model for an [[∞-group]], there is often a model for the [[universal principal ∞-bundle]] $\mathbf{E}G$ that itself carries a group structure such that the canonical inclusion $G \to \mathbf{E}G$ is a homomorphism of group objects. This extra groupal structure is important for various constructions. \hypertarget{OrdinaryGroups}{}\subsection*{{For ordinary groups}}\label{OrdinaryGroups} For $G$ an ordinary bare [[group]], the [[action groupoid]] $\mathbf{E}G = G//G$ of the right multiplcation action of $G$ on itself \begin{displaymath} G//G = \left( G \times G \stackrel{\overset{\cdot}{\to}}{\underset{p_1}{\to}} G \right) \end{displaymath} is [[contractible]]. We may think of this as the groupoid $INN(G) \subset AUT(G)$ of [[inner automorphism]]s inside the [[automorphism 2-group]] of $G$. But it is also simply isomorphic to the [[codiscrete groupoid]] on the set underlying $G$. In this latter form the 2-group structure on $\mathbf{E}G$ is manifest, which corresponds to the [[crossed module]] $(G \stackrel{Id}{\to} G)$ . It is also manifest then that this fits with the one-object [[delooping]] groupoid $\mathbf{B}G$ of $G$ into a sequence \begin{displaymath} G \to \mathbf{E}G \to \mathbf{B}G \,, \end{displaymath} where the first morphism is a homomorphism of [[strict 2-group]]s. Regarded as a sequence of morphisms in the model [[Kan complex|KanCplx]] of the [[(∞,1)-topos]] [[∞-Grpd]] this \emph{is} already a model for the universal $G$-bundle. If $G$ here is refined to a [[Lie group]] or [[topological group]] then this is a sequence of [[∞-Lie groupoid]]s or [[topological ∞-groupoid]]s, respectively, and also then, this \emph{is} already a model for the universal $G$-principal bundle, as discussed at . By applying the [[geometric realization]] functor \begin{displaymath} |-| : \infty Grpd \stackrel{\simeq}{\to} Top \end{displaymath} we obtain a sequence of topological spaces \begin{displaymath} G \to \mathcal{E}G \to \mathcal{B}G \,, \end{displaymath} where $\mathcal{E}G$ carries the structure of a [[topological group]] and the morphism $G \to \mathcal{E}G$ is a topological group homomorphism. For bare groups $G$ and under mild assumptions also for general topological groups $G$, this groupal topological model for the universal $G$-bundle obtained from the realization of the groupoid $G//G$ was consider in \hyperlink{Segal}{Segal68}. \hypertarget{for_strict_2groups}{}\subsection*{{For strict 2-groups}}\label{for_strict_2groups} For $G \in$ [[∞Grpd]] a [[strict 2-group]] a groupal model for $\mathbf{E}G$ was given in \hyperlink{RobertsSchreiber}{RobertsSchr07} generalizing the $INN(G) \subset AUT(G)$ construction mentioned above. This yields a weak 3-group structure on $\mathbf{E}G$ (A [[Gray-group]]). In \hyperlink{RobertsUniversal}{Roberts07} it is observed that there is also an analog of $codisc(G)$ and that this yields a strict group structure on $\mathbf{E}G$. In fact, this strictly groupal model of $\mathbf{E}G$ turns out to be isomorphic to the standard model for the universal [[simplicial principal bundle]] traditionally denoted $W G$. And this statement generalizes\ldots{} \hypertarget{for_groups}{}\subsection*{{For $\infty$-Groups}}\label{for_groups} Every [[∞-group]] may be modeled by a [[simplicial group]] $G$. There is a standard [[Kan complex]] model for the universal $G$-[[simplicial principal bundle]] $\mathbf{E}G \to \mathbf{B}G$ denoted $W G \to \bar W G$. This standard model $W G$ does happen to have the structure of a [[simplicial group]] itself, and this structure is compatible with that of $G$ in that the canonical inclusion $G \to W G$ is a homomorphisms of simplicial groups. This sounds like a statement that must be well known, but it was maybe not in the literature. The simplicial group structure is spelled out explicitly in \hyperlink{RobertsUniversal}{Roberts07} \hypertarget{for_groups_in_an_arbitrary_topos}{}\subsection*{{For $\infty$-groups in an arbitrary $(\infty,1)$-topos}}\label{for_groups_in_an_arbitrary_topos} Since the $W$ construction discussed above is functorial, this generalizes to prresheaves of simplicial groups and hence gives models for group objects and groupal universal [[principal ∞-bundle]]s in [[(∞,1)-topos]]es modeled by the [[model structure on simplicial presheaves]]. (\ldots{}) \hypertarget{for_lie_groups}{}\subsection*{{For $\infty$-Lie groups}}\label{for_lie_groups} In the [[(∞,1)-topos]] [[?LieGrpd]] of [[∞-Lie groupoid]]s we can obtain [[∞-group]]s by [[Lie integration]] of [[L-∞-algebra|∞-Lie algebra]]s. Corresponding to this is a construction of Lie-integrated groupal universal principal $\infty$-bundles: for $\mathfrak{g}$ an $L_\infty$-algebra, there is an $L_\infty$-algebra $inn(\mathfrak{g})$, defined such that its [[Chevalley-Eilenberg algebra]] is the [[Weil algebra]] $W(\mathfrak{g})$ of $\mathfrak{g}$: \begin{displaymath} CE(inn(\mathfrak{g})) = W(\mathfrak{g}) \,. \end{displaymath} Under [[Lie integration]] this gives a groupal model for the universal principal $\infty$-bundle over the [[∞-Lie group]] that integrates $\mathfrak{g}$. This is described at \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[principal ∞-bundle]] \item [[universal principal ∞-bundle]] , \textbf{groupal model for universal principal ∞-bundle} \item [[universal connection]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The observation that for $G$ an ordinary [[group]], its [[action groupoid]] sequence $G \to G//G \to \mathbf{B}G$ -- which is the [[strict 2-group]] coming from the [[crossed module]] $(G \stackrel{Id}{\to} G)$ - maps under the [[nerve]] to the universal $G$-bundle appeared in \begin{itemize}% \item G. B. Segal, \emph{Classifying spaces and spectral sequences} , Publ. Math. IHES No. 34 (1968) pp. 105--112 \end{itemize} A weak 3-group structure on $G \to \mathbf{E}G$ for $G$ a [[strict 2-group]] is descibed in \begin{itemize}% \item [[David Roberts]], [[Urs Schreiber]], \emph{The inner automorphism 3-group of a strict 2-group} , Journal of Homotopy and Related Structures, vol. 3(1) (\href{http://arxiv.org/abs/0708.1741}{arXiv:0708.1741}) \end{itemize} The [[simplicial group]] structure on $G \to \mathbf{E}G$ for $G$ a general [[simplicial group]] is stated explicitly in \begin{itemize}% \item [[David Roberts]], \emph{The universal simplicial bundle is a simplicial group}, \href{http://nyjm.albany.edu/}{New York Journal of Mathematics}, Volume 19 (2013) 51-60, \href{http://nyjm.albany.edu/j/2013/19-5.html}{journal version}, \href{http://arxiv.org/abs/1204.4886}{arXiv:1204.4886}. \end{itemize} A general abstract construction of this simplicial group structure is discussed in \begin{itemize}% \item [[David Roberts]], [[Danny Stevenson]], \emph{Simplicial principal bundles in parameterized spaces}, (\href{http://arxiv.org/abs/1203.2460}{arXiv:1203.2460}) \end{itemize} The use of [[L-∞-algebra]]s $inn(\mathfrak{g})$ as $L_\infty$-algebraic models for universal $\mathfrak{g}$-principal bundle (evident as it is) was considered as such in \begin{itemize}% \item [[nLab:Hisham Sati]], [[nLab:Urs Schreiber|U.S.]], [[nLab:Jim Stasheff]], \emph{$L_\infty$-algebra connections} in Fauser (eds.) Recent Developments in QFT, Birkh\"a{}user (\href{http://arxiv.org/abs/0801.3480}{arXiv:0801.3480}) \end{itemize} [[!redirects groupal model for universal principal ∞-bundle]] [[!redirects groupal model for universal principal ∞-bundles]] [[!redirects groupal models for universal principal ∞-bundles]] [[!redirects groupal models for universal principal infinity-bundles]] \end{document}