\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{groupoid object in an (infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{internal_categories}{}\paragraph*{{Internal $(\infty,1)$-Categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition_complete_segalspace_style}{Definition (complete Segal-space style)}\dotfill \pageref*{definition_complete_segalspace_style} \linebreak \noindent\hyperlink{groupoid_object}{Groupoid object}\dotfill \pageref*{groupoid_object} \linebreak \noindent\hyperlink{group_object}{Group object}\dotfill \pageref*{group_object} \linebreak \noindent\hyperlink{RelationToQuotients}{Relation to $(\infty,1)$-quotients}\dotfill \pageref*{RelationToQuotients} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EquivalentCharacterizations}{Equivalent characterizations}\dotfill \pageref*{EquivalentCharacterizations} \linebreak \noindent\hyperlink{the_category_of_groupoid_objects}{The $(\infty,1)$-category of groupoid objects}\dotfill \pageref*{the_category_of_groupoid_objects} \linebreak \noindent\hyperlink{cech_nerves}{Cech nerves}\dotfill \pageref*{cech_nerves} \linebreak \noindent\hyperlink{Effective}{Effective quotients}\dotfill \pageref*{Effective} \linebreak \noindent\hyperlink{Delooping}{Delooping}\dotfill \pageref*{Delooping} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{group_objects_in_an_topos}{Group objects in an $(\infty,1)$-topos}\dotfill \pageref*{group_objects_in_an_topos} \linebreak \noindent\hyperlink{ModelsInInfGrpd}{Models for group objects in $\infty Grpd$}\dotfill \pageref*{ModelsInInfGrpd} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[group object]] in an ordinary [[category]] $C$ with [[pullback]]s is an [[internalization|internal]] [[group]]. More generally, there is the notion of an [[internal groupoid]] in a category $C$. By the logic of [[vertical categorification]], an \textbf{internal $\infty$-group} or \textbf{[[internal ∞-groupoid]]} may be defined as a group(oid) object internal to an [[(∞,1)-category]] $C$ with [[(∞,1)-pullbacks]]. As described there, in full generality this involves not only a weakening of the usual [[associativity]] and [[unit laws]] up to [[homotopy]], but requires specification of [[coherence]] laws of these homotopies up to higher homotopy, and so on. A \emph{group object} in an [[(∞,1)-category]] generalizes and unifies two familiar concepts: \begin{itemize}% \item it is the generalization of the notion of groupal [[Jim Stasheff|Stasheff]] $A_\infty$-[[A-infinity-space|space]] from [[Top]] to more general [[(∞,1)-sheaf (∞,1)-toposes]]: an object that comes equipped with an associative and invertible [[monoid]] structure, up to [[coherence|coherent]] [[homotopy]], and possibly only [[horizontal categorification|partially defined]] (see also [[looping and delooping]] for more on this) ; \item it generalizes the notion of \emph{[[equivalence relation]]} -- or rather the [[internalization|internal]] notion of \emph{[[congruence]]} -- from [[category theory]] to [[(∞,1)-category theory]]. \end{itemize} Of particular relevance are such group objects that define [[quotient object|effective quotients]] \begin{itemize}% \item these are [[delooping|deloopable]]; \item these generalize the notion of [[regular epimorphism]]; \item these serve to characterize [[regular category|regular (∞,1)-categories]] -- such as [[∞-stack]] [[(∞,1)-topoi]] -- as those where every such object is an [[quotient object|effective quotient]]. \end{itemize} A \emph{groupoid object} is then accordingly the [[horizontal categorification|many-object]] version of a [[group object]]. But notice the following. Since this is defined [[internalization|internal]] to an [[(∞,1)-category]], externally these look like genuine [[∞-groupoid]] and [[∞-group]] objects. For instance a [[group object]] in a [[(2,1)-category]] such as [[Grpd]] is, externally, a [[2-group]]. Also notice that if the ambient $(\infty,1)$-category is in fact an [[(∞,1)-topos]], then every object in there may already be thought of as an ``∞-groupoid with geometric structure'' (see for instance the discussion at [[cohesive (∞,1)-topos]], but this is true more generally). The relation between the \emph{internal groupoid objects} then and the objects themselves is (an [[horizontal categorification|oid-ification]]) of that of [[looping and delooping]]. Notably for $G$ any internal group object (externally an [[∞-group]]) the corresponging ordinary object is its [[delooping]] object $\mathbf{B}G$, and every [[pointed object|pointed]] [[n-connected object in an (infinity,1)-topos|connected]] object in the $(\infty,1)$-topos arises this way from an internal group object. A groupoid object \begin{displaymath} \cdots C_2 \stackrel{\to}{\stackrel{\to}{\to}} C_1 \stackrel{\to}{\to} C_0 \end{displaymath} being \textbf{effective} means that it is the [[?ech nerve]] \begin{displaymath} \cdots C_0 \times_{C_0//C_1} C_0 \times_{C_0//C_1} C_0 \stackrel{\to}{\stackrel{\to}{\to}} C_0 \times_{C_0//C_1} C_0 \stackrel{\to}{\to} C_0 \end{displaymath} of its [[action groupoid]] $C_0//C_1$ (the [[(∞,1)-colimit]] over its diagram) \begin{displaymath} \cdots C_2 \stackrel{\to}{\stackrel{\to}{\to}} C_1 \stackrel{\to}{\to} C_0 \to C_0//C_1 := colim_i C_i \,. \end{displaymath} Accordingly, groupoid objects in an $(\infty,1)$-category play a central role in the theory of [[principal ∞-bundles]]. Notice that one of the four characterizing properties of an [[(∞,1)-topos]] by the higher analog of the [[Giraud theorem]] is that every groupoid object is effective. \hypertarget{definition_complete_segalspace_style}{}\subsection*{{Definition (complete Segal-space style)}}\label{definition_complete_segalspace_style} \hypertarget{groupoid_object}{}\subsubsection*{{Groupoid object}}\label{groupoid_object} The following definition follows in style the definition of a [[complete Segal space]] object. \begin{defn} \label{}\hypertarget{}{} For $C$ an [[(∞,1)-category]], a \textbf{groupoid object} in $C$ is a [[simplicial object in an (∞,1)-category]] \begin{displaymath} A : \Delta^{op} \to C \end{displaymath} such that for all partitions $S \cup S'$ of $[n]$ that share precisely one vertex $s$, we have that \begin{displaymath} \itexarray{ A([n]) &\to & A(S) \\ \downarrow && \downarrow \\ A(S') &\to& A(\{s\}) } \end{displaymath} is a [[(∞,1)-pullback]] diagram in $C$. Here, by a partition $S \cup S'$ of $[n]$ that share precisely one vertex $s$, we mean two subsets $S$ and $S'$ of $\{0,1,\ldots,n\}$ whose union is $\{0,1,\ldots,n\}$ and whose intersection is the singleton $\{s\}$. The linear order on $[n]$ then restricts to the linear order on $S$ and $S'$. The $(\infty,1)$-category of groupoid objects in $C$ is the full [[sub-(∞,1)-category]] \begin{displaymath} Grpd(C) \hookrightarrow Func(\Delta^{op}, C) \end{displaymath} of the [[(∞,1)-category of (∞,1)-functors]] on those objects that are groupoid objects. \end{defn} This is [[Higher Topos Theory|HTT, prop. 6.1.2.6, item 4'']] with [[Higher Topos Theory|HTT, def. 6.1.2.7]]. \begin{remark} \label{}\hypertarget{}{} If one requires the above condition only for those partitions that are order-preserving, then this yields the definition of a (pre-)[[category object in an (∞,1)-category]]. \end{remark} \begin{defn} \label{}\hypertarget{}{} A groupoid object $A : \Delta^{op} \to C$ is the \textbf{[[Cech nerve]]} of a morphism $A_0 \to B$ if $A$ is the restriction of an augmented simplicial object $A^+ : \Delta^{op}_a \to C$ with $A^+_0 \to A^+_{-1}$ as the morphism $A_0 \to B$, such that the sub-[[diagram]] \begin{displaymath} \itexarray{ A^+_1 &\to& A^+_0 \\ \downarrow && \downarrow \\ A^+_0 &\to& A^+_{-1} } \end{displaymath} of $A^+$ is a [[(∞,1)-pullback]] diagram in $C$. \end{defn} This is [[Higher Topos Theory|HTT, below prop. 6.1.2.11]]. If $A$ is the [[?ech nerve]] of a morphism $A_0 \to A_{-1}$\newline then the groupoid object is [[delooping|deloopable]] in the groupoid sense. \begin{defn} \label{EffectiveGroupoid}\hypertarget{EffectiveGroupoid}{} A groupoid object $A : \Delta^{op} \to C$ is an \textbf{effective [[quotient object]]} if the [[(∞,1)-colimit]] diagram $A^+ : \Delta_a^{op} \to C$ exists, such that $A$ is the [[Cech nerve]] of $A^+_0 \to A^+_{-1}$, i.e. of $A_0 \to \lim_\to A_\bullet$. \end{defn} \hypertarget{group_object}{}\subsubsection*{{Group object}}\label{group_object} A \textbf{group object} is a groupoid object $U : \Delta^{op} \to C$ for which $U_0 \simeq *$ is a [[terminal object in a quasi-category|terminal object]]. ([[Higher Topos Theory|HTT, def. 7.2.2.1]]). It follows ([[Higher Topos Theory|HTT, prop. 7.2.2.4]]) that a group object is of the form \begin{displaymath} U = \left( \cdots G \times G \stackrel{\to}{\stackrel{\to}{\to}} G \stackrel{\to}{\to} * \right) \,. \end{displaymath} \hypertarget{RelationToQuotients}{}\subsubsection*{{Relation to $(\infty,1)$-quotients}}\label{RelationToQuotients} \begin{remark} \label{}\hypertarget{}{} A groupoid object in an $(\infty,1)$-category \begin{displaymath} \left( \cdots A_2 \stackrel{\to}{\stackrel{\to}{\to}} A_1 \stackrel{\to}{\to} A_0 \right) \end{displaymath} is the [[(∞,1)-category]] analog of an internal [[equivalence relation]] on $A_0$, which is just a pair of morphisms \begin{displaymath} R \stackrel{\to}{\to} A_0 \,. \end{displaymath} The [[colimit]] ([[coequalizer]]) of the latter diagram is the [[quotient]] of $A_0$ by the relation $R$. Analogously, the [[(∞,1)-colimit]] \begin{displaymath} \lim_\to (\Delta^{op} \stackrel{A}{\to} C) \end{displaymath} over the simplicial diagram $A : \Delta^{op} \to C$ is the corresponding \textbf{$(\infty,1)$-quotient}. If we are given a [[model category]] [[presentable (∞,1)-category|presentation]] of the [[(∞,1)-category]] $C$, then this [[(∞,1)-colimit]] is presented by a [[homotopy colimit]] over the corresponding simplicial diagraM a \textbf{homotopy quotient} . \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EquivalentCharacterizations}{}\subsubsection*{{Equivalent characterizations}}\label{EquivalentCharacterizations} We state in prop. \ref{EquivalentCharacterizationsViaSlicesAndPowering} below a list of equivalent conditions that characterize a [[simplicial object in an (∞,1)-category]] as a groupoid object. This uses the following basic notions, which we review here for convenience. \begin{defn} \label{}\hypertarget{}{} For $K \in$ [[sSet]] a [[simplicial set]], write $\Delta_{/K}$ for its [[category of simplices]]. For $X_\bullet \in \mathcal{C}^{\Delta^{op}}$ a simplicial object, write \begin{displaymath} X[K] \colon \Delta^{op}_{/K} \to \Delta^{op} \stackrel{X}{\to} \mathcal{C} \end{displaymath} for the precomposition of $X_\bullet$ with the canonical projection. Moreover, write \begin{displaymath} X(K) \coloneqq \underset{\leftarrow}{\lim} X[K] \end{displaymath} for the [[(∞,1)-limit]] over this composite [[(∞,1)-functor]] in $\mathcal{C}$ (if it exists). (Notice: square brackets for the composite functor, round brackets for its $(\infty,1)$-limit.) \end{defn} \begin{remark} \label{EquivalenceOfConeCategoriesAndLimits}\hypertarget{EquivalenceOfConeCategoriesAndLimits}{} For $X_\bullet \in \mathcal{C}^{\Delta^{op}}$ and $K \to K'$ the following are equivalent \begin{enumerate}% \item the induced morphism of cone $(\infty,1)$-categoris $\mathcal{C}_{X[K]} \to \mathcal{C}_{X[K']}$ is an [[equivalence of (∞,1)-categories]]; \item the induced morphism of [[(∞,1)-limits]] $X(K) \to X(K')$ is an [[equivalence in an (∞,1)-category|equivalence]]. \end{enumerate} \end{remark} (The first perspective is used in (\hyperlink{Lurie}{Lurie}), the second in (\hyperlink{Lurie2}{Lurie2}).) \begin{proof} In one direction: the limit is the [[terminal object in an (∞,1)-category|terminal object]] in the cone category, and so is preserved by equivalences of cone categories. (This direction appears as (\hyperlink{Lurie}{Lurie, prop. 4.1.1.8})). Conversely, the limits is the object representing cones, and hence an equivalence of limits induces an equivalence of cone categories. \end{proof} \begin{prop} \label{EquivalentCharacterizationsViaSlicesAndPowering}\hypertarget{EquivalentCharacterizationsViaSlicesAndPowering}{} Let $\mathcal{C}$ be an $(\infty,1)$-category incarnated explicitly as a [[quasi-category]]. Then a [[simplicial object in an (∞,1)-category|simplicial object in]] $\mathcal{C}$ is a groupoid object if the following equivalent conditions hold. \begin{enumerate}% \item If $K \to K'$ is a morphism in [[sSet]] which is a [[weak homotopy equivalence]] and a [[bijection]] on [[vertices]], then the induced morphism on [[slice-(∞,1)-categories]] \begin{displaymath} \mathcal{C}_{/X[K]} \to \mathcal{C}_{/X[K']} \end{displaymath} is an [[equivalence of (∞,1)-categories]] (a [[weak equivalence]] in the [[model structure for quasi-categories]]). \item For every $n \geq 2$ and every $0 \leq i \leq n$, the morphism $\mathcal{C}_{/X[\Delta^n]} \to \mathcal{C}_{/X[\Lambda^n_i]}$ is an weak equivalence in the [[model structure for quasi-categories]] \item (\ldots{}) \end{enumerate} Using remark \ref{EquivalenceOfConeCategoriesAndLimits} this means equivalently that the simplicial object $X_\bullet$ is a groupoid precisely if the following \begin{enumerate}% \item $X_\bullet$ satisfies the ordinary [[Segal conditions]] and the morphism $X(\Delta^2) \to X(\Lambda^2_0)$ is an [[equivalence in an (∞,1)-category|equivalence]]. \item (\ldots{}) \end{enumerate} \end{prop} The first items appear as (\hyperlink{Lurie}{Lurie, prop. 6.1.2.6}). The second ones appear in the proofs of (\hyperlink{Lurie2}{Lurie2, prop. 1.1.8, lemma 1.2.25}). \hypertarget{the_category_of_groupoid_objects}{}\subsubsection*{{The $(\infty,1)$-category of groupoid objects}}\label{the_category_of_groupoid_objects} \begin{prop} \label{}\hypertarget{}{} The $(\infty,1)$-category of groupoid objects in $C$ is a [[reflective sub-(∞,1)-category]] \begin{displaymath} Grpd(C) \stackrel{\overset{}{\leftarrow}}{\hookrightarrow} Func(\Delta^{op}, C) \,. \end{displaymath} \end{prop} This is [[Higher Topos Theory|HTT, prop. 6.1.2.9]]. In nice cases the image of this reflective subcategory are the effective epimorphisms: \begin{prop} \label{}\hypertarget{}{} If $C = \mathbf{H}$ in an [[(∞,1)-semitopos]] there is a natural [[equivalence of (∞,1)-categories]] \begin{displaymath} Grpd(\mathbf{H}) \simeq (\mathbf{H}^I)_{eff} \end{displaymath} between the $(\infty,1)$-category of groupoid objects in $\mathbf{H}$ and the full [[sub-(∞,1)-category]] of the [[arrow category]] of $\mathbf{H}$ (the [[(∞,1)-functor (∞,1)-category]] $Func(\Delta[1], \mathbf{H})$) on the [[effective epimorphism in an (∞,1)-category|effective epimorphisms]]. \end{prop} This appears below [[Higher Topos Theory|HTT, cor. 6.2.3.5]]. \hypertarget{cech_nerves}{}\subsubsection*{{Cech nerves}}\label{cech_nerves} Write $\Delta_a$ for the augmented [[simplex category]] (including the object $[-1]$). \begin{prop} \label{}\hypertarget{}{} An augmented simplicial object $A^+ : \Delta_a^{op} \to C$ is the right [[Kan extension]] of its restriction to $[-1]$ and $[0]$ \begin{displaymath} \itexarray{ \{[-1] \leftarrow [0]\} &\stackrel{A^+|_{\leq 0}}{\to}& C \\ \downarrow & \nearrow_{\mathrlap{A^+}} \\ \Delta_a^{op} } \end{displaymath} precisley if $A^+|_{\geq 0}$ is a groupoid object in $C$ and the [[diagram]] \begin{displaymath} \itexarray{ A_1 &\to& A_0 \\ \downarrow && \downarrow \\ A_0 &\to& A_{-1} } \end{displaymath} is a [[(∞,1)-pullback]] in $C$. \end{prop} $A$ is called the \textbf{[[Cech nerve]]} of $A_0 \to A_{-1}$ if the equivalent conditions of this proposition are satisfied. \hypertarget{Effective}{}\subsubsection*{{Effective quotients}}\label{Effective} \begin{prop} \label{}\hypertarget{}{} In $C =$ [[∞Grpd]] every groupoid object is an effective quotient, def. \ref{EffectiveGroupoid}. \end{prop} This is [[Higher Topos Theory|HTT, below remark 6.1.2.15]] and [[Higher Topos Theory|HTT, cor. 6.1.3.20]]. More generally, this is true for every [[(∞,1)-topos]]. \begin{prop} \label{}\hypertarget{}{} In $C$ is an [[(∞,1)-topos]], then every groupoid object in $C$ is an effective quotient, def. \ref{EffectiveGroupoid}. \end{prop} This is [[Higher Topos Theory|HTT, theorem 6.1.0.6 (4) iv)]]. \hypertarget{Delooping}{}\subsubsection*{{Delooping}}\label{Delooping} For $\mathcal{X}$ an [[(∞,1)-category]] with [[(∞,1)-pullback]]s and for $x : * \to X$ a [[pointed object|pointed]] object in $\mathcal{X}$, its [[loop space object]] at $x$ is the [[(∞,1)-pullback]] \begin{displaymath} \Omega_x X := {*} \prod_{X} {*} \end{displaymath} hence the object universally filling the diagram \begin{displaymath} \itexarray{ \Omega_x X &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{x}} \\ * &\stackrel{x}{\to}& X } \,. \end{displaymath} Since this is the beginning of the [[Cech nerve]] of $* \to X$, $\Omega_x X$ is naturally equipped with the structure of an $\infty$-group object in $\mathcal{X}$. \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{X}$ be an [[(∞,1)-topos]]. Then the operation of forming [[loop space]] objects constitutes an [[equivalence of (∞,1)-categories]] \begin{displaymath} \Omega : PointedConnected(\mathcal{X}) \stackrel{\simeq}{\to} Grp(\mathcal{X}) \end{displaymath} from the full [[sub-(∞,1)-category]] of the [[over-(∞,1)-category|under-(∞,1)-category]] $*/\mathcal{X}$ of [[pointed object]]s on those that are also [[0-connected]] (hence those that have an essentially unique point) with the $(\infty,1)$-category of group objects in $\mathcal{X}$. \end{prop} This is [[Higher Topos Theory|HTT, lemma 7.2.2.11 (1)]] The inverse to $\Omega$ we write \begin{displaymath} \mathbf{B} : Grp(\mathcal{X}) \to PointedConnected(\mathcal{X}) \,. \end{displaymath} For $G \in Grp(\mathcal{X})$ we call $\mathbf{B}G$ its [[delooping]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{group_objects_in_an_topos}{}\subsubsection*{{Group objects in an $(\infty,1)$-topos}}\label{group_objects_in_an_topos} When the ambient [[(∞,1)-category]] is an [[(∞,1)-topos]] then -- by the $\infty$-Giraud axioms -- all groupoid objects are [[quotient object|effective]], meaning that for \begin{displaymath} \mathbf{B}G = \lim_{\to} U_\bullet \end{displaymath} the [[(∞,1)-colimit]] over the group object $U_\bullet$ we have that $U_\bullet$ is reproduced as the Cech nerve of $* \to \mathbf{B}G$ \begin{displaymath} \left( \cdots G \times G \stackrel{\to}{\stackrel{\to}{\to}} G \stackrel{\to}{\to} * \right) \simeq \left( \cdots {*}\times_{\mathbf{B}G}{*}\times_{\mathbf{B}G}{*} \stackrel{\to}{\stackrel{\to}{\to}} {*}\times_{\mathbf{B}G}{*} \stackrel{\to}{\to} * \right) \,. \end{displaymath} The object $\mathbf{B}G$ is the [[delooping]] object of the group object $G$. For more on this see also [[principal ∞-bundle]]. \hypertarget{ModelsInInfGrpd}{}\subsubsection*{{Models for group objects in $\infty Grpd$}}\label{ModelsInInfGrpd} There is a [[model category]] structure that presents the [[(∞,1)-category]] of group objects in [[∞Grpd]]: the [[∞-group]]s. \begin{itemize}% \item The group objects $G$ themselves are modeled by a model structure on the category $sGrp$ of [[simplicial group]]s. \item Their delooping spaces $\mathbf{B}G$ are modeled by a model structure on the category $sSet_0$ of [[simplicial set]]s with a single vertex. \end{itemize} The operation of forming [[loop space object]]s constitutes a [[Quillen equivalence]] between these two model structures \begin{displaymath} \Omega : sSet_0 \stackrel{\simeq_{Quillen}}{\to} sGrp \,. \end{displaymath} The Quillen equivalence itself is in section 6 there. \begin{prop} \label{}\hypertarget{}{} There exists the [[transferred model structure]] on the category $sGrp$ of [[simplicial group]]s along the [[forgetful functor]] \begin{displaymath} U : sGrp \to sSet_{Quillen} \end{displaymath} to the standard [[model structure on simplicial sets]]. This means that a morphism in $sGrp$ is a \begin{itemize}% \item weak equivalences \item or fibration \end{itemize} precisely if it is so in $sSet_{Quillen}$. \end{prop} This appears as (\href{GoerssJardine}{GoerssJardine, ch V, theorem. 2.3}). \begin{prop} \label{}\hypertarget{}{} There is a [[model structure on reduced simplicial sets]] $sSet_0$ ([[simplicial sets]] with a single vertex) whose \begin{itemize}% \item weak equivalences \item and cofibrations \end{itemize} are those in the standard [[model structure on simplicial sets]]. \end{prop} This appears as (\href{GoerssJardine}{GoerssJardine, ch V, prop. 6.2}). \begin{prop} \label{}\hypertarget{}{} The simplicial loop space functor $G$ and the delooping functor $\bar W(-)$ (discussed at [[simplicial group]]) constitute a [[Quillen equivalence]] \begin{displaymath} (G \dashv \bar W) : sGr \stackrel{\overset{G}{\leftarrow}}{\underset{\bar W}{\to}} sSet_0 \,. \end{displaymath} The $(G \dashv \bar W)$-[[unit of an adjunction|unit]] and counit are weak equivalences: \begin{displaymath} X \stackrel{\simeq}{\to} \bar W G X \end{displaymath} \begin{displaymath} G \bar W G \stackrel{\simeq}{\to} G \,. \end{displaymath} \end{prop} This appears as (\hyperlink{GoerssJardine}{GoerssJardine, ch. V prop. 6.3}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[∞-group]] \item [[monoid]]. [[monoid object]], [[monoid object in an (∞,1)-category]] \item [[group]], [[group object]] \item [[ring]], [[ring object]] \item [[looping and delooping]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Groupoid objects in $(\infty,1)$-categories are the topic of section 6.1.2 in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} Model category presentations of groupoid objects in $\infty Grpd$ by groupoidal [[complete Segal spaces]] are discussed in \begin{itemize}% \item [[Julia Bergner]], \emph{Adding inverses to diagrams encoding algebraic structures}, Homology, Homotopy and Applications 10 (2008), no. 2, 149--174. (\href{http://arxiv.org/abs/math/0610291}{arXiv:0610291}) \emph{Adding inverses to diagrams II: Invertible homotopy theories are spaces}, Homology, Homotopy and Applications, Vol. 10 (2008), No. 2, pp.175-193. (\href{http://www.intlpress.com/hha/v10/n2/a9/}{web}, \href{http://arxiv.org/abs/0710.2254}{arXiv:0710.2254}) \end{itemize} A standard textbook reference on $\infty$-groups in the [[classical model structure on simplicial sets]] is \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], chapter V of \emph{[[Simplicial homotopy theory]]} \href{http://www.maths.abdn.ac.uk/~bensondj/papers/g/goerss-jardine/ch-5.dvi}{chapter V}. \end{itemize} Discussion from the point of view of [[category objects in an (∞,1)-category]] is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[(∞,2)-Categories and the Goodwillie Calculus]]} (\href{http://arxiv.org/abs/0905.0462}{arXiv:0905.0462}) \end{itemize} [[!redirects groupoid object in an (∞,1)-category]] [[!redirects groupoid objects in an (∞,1)-category]] [[!redirects groupoid objects in an (infinity,1)-category]] [[!redirects group object in an (infinity,1)-category]] [[!redirects group object in an (∞,1)-category]] [[!redirects group objects in an (infinity,1)-category]] [[!redirects group objects in an (∞,1)-category]] \end{document}