\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{groupoid representation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{linear_algebra}{}\paragraph*{{Linear algebra}}\label{linear_algebra} [[!include homotopy - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contentsrepre}{}\section*{{Contentsrepre}}\label{contentsrepre} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{groupoid representation} is a [[representation]] of a [[groupoid]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{GroupoidRepresentation}\hypertarget{GroupoidRepresentation}{} \textbf{([[groupoid representation]])} Let $\mathcal{G}$ be a [[groupoid]]. Then: A [[linear representation]] of $\mathcal{G}$ is a groupoid homomorphism ([[functor]]) \begin{displaymath} \rho \;\colon\; \mathcal{G} \longrightarrow Core(Vect) \end{displaymath} to the groupoid [[core]] of the category [[Vect]] of [[vector spaces]] (\href{groupoid#CoreGroupoid}{this example}). Hence this is \begin{enumerate}% \item For each object $x$ of $\mathcal{G}$ a [[vector space]] $V_x$; \item for each morphism $x \overset{f}{\longrightarrow} y$ of $\mathcal{G}$ a [[linear map]] $\rho(f) \;\colon\; V_x \to V_y$ \end{enumerate} such that \begin{enumerate}% \item (respect for composition) for all composable morphisms $x \overset{f}{\to}y \overset{g}{\to} z$ in the groupoid we have an [[equality]] \begin{displaymath} \rho(g) \circ \rho(f) = \rho(g \circ f) \end{displaymath} \item (respect for identities) for each object $x$ of the groupoid we have an equality \begin{displaymath} \rho(id_x) = id_{V_x} \,. \end{displaymath} \end{enumerate} Similarly a \emph{[[permutation representation]]} of $\mathcal{G}$ is a groupoid homomorphism ([[functor]]) \begin{displaymath} \rho \;\colon\; \mathcal{G} \longrightarrow Core(Set) \end{displaymath} to the groupoid core of [[Set]]. Hence this is \begin{enumerate}% \item For each object $x$ of $\mathcal{G}$ a [[set]] $S_x$; \item for each morphism $x \overset{f}{\longrightarrow} y$ of $\mathcal{G}$ a [[function]] $\rho(f) \;\colon\; S_x \to S_y$ \end{enumerate} such that composition and identities are respected, as above. For $\rho_1$ and $\rho_2$ two such representations, then a homomorphism of representations \begin{displaymath} \phi \;\colon\; \rho_1 \longrightarrow \rho_2 \end{displaymath} is a [[natural transformation]] between these functors, hence is \begin{itemize}% \item for each object $x$ of the groupoid a (linear) function \begin{displaymath} (V_1)_x \overset{\phi(x)}{\longrightarrow} (V_2)_x \end{displaymath} \item such that for all morphisms $x \overset{f}{\longrightarrow} y$ we have \begin{displaymath} \phi(y) \circ \rho_1(f) = \rho_2(x) \circ \phi(x) \phantom{AAAAAA} \itexarray{ (V_1)_x &\overset{\phi(x)}{\longrightarrow}& (V_2)_x \\ {}^{\mathllap{\rho_1(f)}}\downarrow && \downarrow^{\mathrlap{\phi_2(f)}} \\ (V_1)_y &\underset{\phi(y)}{\longrightarrow}& (V_2)_y } \end{displaymath} \end{itemize} A permutation representation of $\mathcal{G}$ is often called a ``$\mathcal{G}$-set'' (see at \emph{[[G-set]]}) and the category of permutation representations is also often denoted \begin{displaymath} \mathcal{G}Set \phantom{AAAAA} \text{or} \phantom{AAAAA} Set^{\mathcal{G}} \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{cor} \label{GroupoidRepresentationsAreProductsOfGroupRepresentations}\hypertarget{GroupoidRepresentationsAreProductsOfGroupRepresentations}{} \textbf{([[groupoid representations]] are [[product category|products]] of [[group representations]])} Assuming the [[axiom of choice]] then the following holds: Let $\mathcal{G}$ be a [[groupoid]]. Then its [[category of representations|category of]] groupoid representations is [[equivalence of categories|equivalent]] to the [[product category]] indexed by the set of [[connected components]] $\pi_0(\mathcal{G})$ (\href{groupoid#GroupoidConnectedComponents}{this def.}) of [[group representations]] of the [[automorphism group]] $G_i \coloneqq Aut_{\mathcal{G}}(x_i)$ (\href{groupoid#InGrupoidAutomorphismGroup}{this def.}) for $x_i$ any object in the $i$th connected component: \begin{displaymath} Rep_{Grpd}(\mathcal{G}) \;\simeq\; \underset{i \in \pi_0(\mathcal{G})}{\prod} Rep(G_i) \,. \end{displaymath} \end{cor} \begin{proof} Let $\mathcal{C}$ be the category that the representation is on. Then by definition \begin{displaymath} Rep_{Grpd}(\mathcal{G}) = Hom( \mathcal{G} , \mathcal{C} ) \,. \end{displaymath} Consider the injection functor of the [[skeleton]] (from \href{groupoid#DeloopingGroupoidEquivalence}{this lemma}) \begin{displaymath} inc \;\colon\; \underset{i \in \pi_0(\mathcal{G})}{\sqcup} B G_i \overset{}{\longrightarrow} \mathcal{G} \,. \end{displaymath} By \href{groupoid#HmotopiesWithMorphismsHorizontaComposition}{this lemma} the pre-composition with this constitutes a functor \begin{displaymath} inc^\ast \;\colon\; Hom( \mathcal{G}, \mathcal{C} ) \longrightarrow Hom( \underset{i \in \pi_0(\mathcal{G})}{\sqcup} B G_i, \mathcal{C} ) \end{displaymath} and by combining \href{groupoid#DeloopingGroupoidEquivalence}{this lemma} with \href{groupoid#HorizontalCompositionWithHomotopyIsNaturalTransformation}{this lemma} this is an [[equivalence of categories]]. Finally, by \href{groupoid#GroupoidRepresentationOfDeloopingGroupoid}{this example} the category on the right is the product of group representation categories as claimed. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{GroupoidRepresentationOfDeloopingGroupoid}\hypertarget{GroupoidRepresentationOfDeloopingGroupoid}{} \textbf{([[groupoid representation]] of [[delooping]] groupoid is [[group representation]])} If $B G$ is the [[delooping]] groupoid of a [[group]] $G$ (\href{groupoid#GroupoidFromDelooping}{this example}), then a [[groupoid representation]] of $B G$ according to def. \ref{GroupoidRepresentation} is equivalently a [[group representation]] of the group $G$: \begin{displaymath} Rep_{Grpd}(B G) \simeq Rep(G) \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} \textbf{([[fundamental theorem of covering spaces]])} For $X$ a [[topological space]] then forming [[monodromy]] is a [[functor]] from the [[category of covering spaces]] over $X$ to that of [[permutation representations]] of the [[fundamental groupoid]] of $X$: \begin{displaymath} Fib \;\colon\; Cov(C) \longrightarrow Set^{\Pi_1(X)} \,. \end{displaymath} If $X$ is [[locally path-connected topological space|locally path connected]] and [[semi-locally simply connected topological space|semi-locally simply connected]], then this is an [[equivalence of categories]]. See at \emph{[[fundamental theorem of covering spaces]]} for details. \end{example} [[!redirects groupoid representations]] [[!redirects representation of groupoids]] [[!redirects representations of groupoids]] \end{document}