\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{h-set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{constructivism_realizability_computability}{}\paragraph*{{Constructivism, Realizability, Computability}}\label{constructivism_realizability_computability} [[!include constructivism - contents]] \hypertarget{hsets}{}\section*{{h-Sets}}\label{hsets} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{equivalent_characterizations}{Equivalent characterizations}\dotfill \pageref*{equivalent_characterizations} \linebreak \noindent\hyperlink{RelationToInternalSets}{Relation to internal sets}\dotfill \pageref*{RelationToInternalSets} \linebreak \noindent\hyperlink{PretoposOfHsets}{Pretopos of hsets}\dotfill \pageref*{PretoposOfHsets} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} In [[homotopy type theory]] an \emph{h-set} is a [[type]] $X$ -- hence a [[homotopy type]] -- with the special property that any two of its [[terms]] $x,y : X$ are [[equality|equal]] ([[equivalence|equivalent]]) in an at most essentially unique way, hence that the [[identity type]] $(x = y) : Type$ is an [[h-proposition]]. The notion of h-set is an [[internalization]] of the notion of [[0-truncated]] object into homotopy type theory, essentially an internalization of the notion of \emph{[[set]]} (or possibly of \emph{[[preset]]}). See below in \emph{\hyperlink{RelationToInternalSets}{Relation to internal sets}} for more on this. h-Sets can also be regarded as a way of embedding [[extensional type theory]] into [[intensional type theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $A$ be a [[type]] in [[intensional type theory|intensional]] [[type theory]] with [[dependent sums]], [[dependent products]], and [[identity types]]. We define a new type $isSet(A)$ as follows: \begin{displaymath} isSet(A) \coloneqq \prod_{x\colon A} \prod_{y\colon A} isProp(x=y) \end{displaymath} (using any equivalent definition of the [[predicate]] [[isProp]] for [[h-propositions]]; and where ``$\prod$'' denotes [[dependent product]] types and ``$=$'' denotes [[identity types]]). In other words, the only relationship between two elements of an h-set is whether they are equal; there is no room for more than one path between them. By [[beta reduction|beta-reducing]] this definition, we can express it as \begin{displaymath} isSet(A) \coloneqq \prod_{x,y\colon A} \prod_{p,q\colon x=y} (p=q) \end{displaymath} In other words, any two parallel paths in $A$ are equal. A provably [[equivalence in homotopy type theory|equivalent]] definition is \begin{displaymath} isSet(A) \coloneqq \prod_{x\colon A} \prod_{p\colon x=x} (p=id_x) \end{displaymath} This says that a version of Streicher's ``[[axiom K]]'' holds for h-sets. (See also at \emph{[[axiom UIP]]}.) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Most (non-[[higher inductive type|higher]]) [[inductive types]] are h-sets (assuming that all their parameters and indices are so). In particular, the type of [[natural numbers]] is an h-set. This can be proven from Theorem \ref{DecidableIsSet} below. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{equivalent_characterizations}{}\subsubsection*{{Equivalent characterizations}}\label{equivalent_characterizations} One interesting consequence of this definition is the following, first proven in (\hyperlink{Hedberg}{Hedberg}) \begin{theorem} \label{DecidableIsSet}\hypertarget{DecidableIsSet}{} (\textbf{[[Hedberg's theorem]]}) Suppose that $A$ is a [[type]] which has [[decidable equality]] in the [[propositions as types]] [[logic]] (which is not the logic of h-propositions usually used in HoTT). In other words, the projection \begin{displaymath} \itexarray{Paths_A + (0\to A\times A)^{(Paths_A\to A\times A)}\\ \downarrow\\ A\times A} \end{displaymath} (where $Paths_A$ is the [[path object|path type]] of $A$, ``+'' forms the [[sum type]], and on the right we have the $A \times A$-[[dependent type|dependent]] [[function type]] into the [[empty type]]), has a section. Then $A$ is a h-set. \end{theorem} \begin{proof} Let $d$ be the given [[section]]. Thus, for any $x,y\colon A$, $d(x,y)$ is either a path from $x$ to $y$ or a function from $Paths(x,y)$ to the empty type (implying that $Paths(x,y)$ is also empty). It suffices to exhibit an operation connecting any endo-path $p \in Paths(x,x)$ to the identity path $1_x$. Given such a path, define $q = d(x,x)$. If $d(x,x)$ lies in the second case, then $Paths(x,x)$ is empty, a contradiction since we know it contains $1_x$; hence we may assume $q\in Paths(x,x)$ as well. Let $r$ be the image of $(1_x,p) \in Paths_{A\times A}((x,x),(x,x))$ under the section $d$. This is a path in the total space $Paths_A$ lying over the path $(1_x,p)$ in $A\times A$. Equivalently, it is a path in the fiber over $x$ from $(1_x,p)_*(d(x,x))$ to $d(x,x)$, where $(1_x,p)_*$ denotes transport in the fibration $Paths_A \to A\times A$ along the path $(1_x,p)$. However, we have defined $d(x,x) = q$, and transport in a path-space is just composition, so $r$ may be regarded as a path from $q p$ to $q$. Canceling $q$, we obtain a path from $p$ to $1_x$. \end{proof} Not every h-set has decidable equality (unless the law of [[excluded middle]] hold), but there are some other related equivalent characterizations. \begin{itemize}% \item A type $A$ is an h-set if and only if all its identity types $x=_A y$ have [[split support]], i.e. $\prod_{(x,y:A)} \Vert x=y\Vert \to (x=y)$. This is proven in \hyperlink{KECA}{(KECA)}. \item More generally, $A$ is an h-set if and only if there is some $R:A\to A\to Prop$ which is reflexive (i.e. $\prod_{(x:A)} R(x,x)$) and such that $\prod_{(x,y:A)} R(x,y) \to (x=y)$. This is Theorem 7.2.2 in the [[HoTT Book]]. \end{itemize} \hypertarget{RelationToInternalSets}{}\subsubsection*{{Relation to internal sets}}\label{RelationToInternalSets} When using [[homotopy type theory]] as the ambient [[foundations]], h-sets generally play the role of the [[sets]]. When homotopy type theory is the [[internal logic]] of some [[(∞,1)-category]], then the h-sets are the ``internal sets'' in this internal logic. (Not to be confused with the other meaning of [[internal set]].) Note, though, that this notion of ``internal set'' is of a different sort from the usual notions of [[internal category]] or [[internal groupoid]]. If an internal set is an h-set, then an ``internal groupoid'' should mean a 1-truncated type, whereas an internal groupoid usually means some kind of [[groupoid object in an (∞,1)-category]]. Conversely, the usual meaning of ``internal groupoid'' suggests that the meaning of ``internal set'' should be something more like a [[setoid]], with the h-sets being more like [[presets]]. This latter meaning is how ``sets'' are more often defined by constructive type theorists. The point is that to be worthy of the name ``set'', a notion ought to come with ``[[quotients]] of [[equivalence relations]]''. If we start with a notion which does \emph{not} have quotients, such as the types in ordinary [[Martin-Löf dependent type theory]], then in order to get a good notion of ``set'' we need to ``freely add quotients'', which semantically means passing to the [[exact completion]] whose objects are [[setoids]]. But if we start with a notion that does have quotients, then this is unnecessary. In homotopy type theory, h-sets do have quotients, which can be constructed using [[higher inductive types]]; thus it makes sense to call them ``sets'' rather than ``presets''. A good way to reconcile these seemingly clashing terminologies is to talk about [[exact completions]] of [[unary sites]] or [[(∞,1)-sites]]. The presence of a [[Grothendieck topology]] allows us to ``remember'' to what extent our given notion has well-behaved quotients: if we have no quotients, then we use the [[trivial topology]], whereas if we have quotients, we can use the [[regular topology]]. And the exact completion builds in quotients ``freely'' but preserving those which the topology asserts to already exist. In particular, if we start with quotients (an [[exact category]] or $(\infty,1)$-category), then the exact completion of the regular topology is idempotent, whereas if we start with a trivial topology, then the exact completion gives a category of setoids. Thus, in general, the good notion of ``internal set'' in a unary site is ``object of the exact completion''. \hypertarget{PretoposOfHsets}{}\subsubsection*{{Pretopos of hsets}}\label{PretoposOfHsets} The h-sets in [[HoTT]] form a [[ΠW-pretopos]] (\hyperlink{RijkeSpitters13}{Rijke-Spitters 13}). See also at \emph{[[structural set theory]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include homotopy n-types - table]] [[!include types and logic - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Michael Hedberg, \emph{A coherence theorem for Martin-L\"o{}f's type theory}, J. Functional Programming, (1998) \item Nicolai Kraus, \emph{A direct proof of Hedberg's theorem}, \href{http://homotopytypetheory.org/2012/03/30/a-direct-proof-of-hedbergs-theorem/}{blog post} \item [[Nicolai Kraus]], [[Martin Escardo]], [[Thierry Coquand]] , [[Thorsten Altenkirch]], \emph{Generalizations of Hedberg's theorem}, in M. Hasegawa (Ed.): TLCA 2013, LNCS 7941, pp. 173-188. Springer, Heidelberg 2013. (\href{http://www.cs.bham.ac.uk/~mhe/papers/hedberg.pdf}{pdf}) \end{itemize} Formalization of [[set theory]] via h-sets in [[homotopy type theory]] is discussed in \begin{itemize}% \item [[Egbert Rijke]], [[Bas Spitters]], \emph{Sets in homotopy type theory}, Mathematical Structures in Computer Science, Volume 25, Issue 5 (From type theory and homotopy theory to Univalent Foundations of Mathematics) (\href{http://arxiv.org/abs/1305.3835}{arXiv:1305.3835}) \end{itemize} which became one chapter in \begin{itemize}% \item [[Univalent Foundations Project]], \emph{[[Homotopy Type Theory – Univalent Foundations of Mathematics]]} \end{itemize} [[!redirects h-set]] [[!redirects h-sets]] [[!redirects hSet]] [[!redirects hSets]] [[!redirects 0-truncated type]] [[!redirects 0-truncated types]] [[!redirects h-level 2]] [[!redirects h-level 2 type]] [[!redirects h-level 2 types]] [[!redirects Hedberg's theorem]] [[!redirects Hedberg theorem]] \end{document}