\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{heap} \hypertarget{heaps}{}\section*{{Heaps}}\label{heaps} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{automorphism_group}{Automorphism group}\dotfill \pageref*{automorphism_group} \linebreak \noindent\hyperlink{heaps_and_torsors}{Heaps and torsors}\dotfill \pageref*{heaps_and_torsors} \linebreak \noindent\hyperlink{empty}{The empty heap}\dotfill \pageref*{empty} \linebreak \noindent\hyperlink{references_and_remarks}{References and remarks}\dotfill \pageref*{references_and_remarks} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{heap} is an algebraic structure which is basically equivalent to a [[group]] when one forgets about which element is the [[identity element|unit]]. Similar notions are [[affine space]], [[principal homogeneous space]] and so on. However, the notion of a heap has a directness and simplicity in the sense that it is formalized as an algebraic structure with only one ternary operation satisfying a short list of axioms. If we start with a group the ternary operation is defined via $(a,b,c)\mapsto a b^{-1}c$. We can interpret that operation as shifting $a$ by the (right) translation in the group which translates $b$ into $c$. There is also a dual version, [[quantum heap]]. Heaps in the sense of algebra should not be confused with \href{http://en.wikipedia.org/wiki/Heap}{heaps} in the sense of theoretical computer science. There are also a number of synonyms for the term `heap'; below we consider `torsor' in this light. In Russian one term for a heap is `груда' (`gruda') meaning a heap of soil; this is a pun as it is parallel to the russian word `группа' (`gruppa') meaning a group: forgetting the unit element is sort of creating an amorphous version. This term also appears in English as `groud'. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{heap} $(H,t)$ is a [[inhabited set|nonempty]] set $H$ equipped with a ternary operation $t : H \times H \times H\to H$ satisfying the relations \begin{displaymath} t(b,b,c) = c = t(c,b,b) \end{displaymath} \begin{displaymath} t(a,b,t(c,d,e)) = t(t(a,b,c),d,e) \end{displaymath} More generally, a ternary operation in some [[variety of algebras]] satisfying the first pair of equations is called a [[Mal'cev operation]]. A Mal'cev operation is called \emph{associative} if it also satisfies the latter equation (i.e. it makes its domain into a heap). A \textbf{heap homomorphism}, of course, is a function that preserves the ternary operations. This defines a category $Heap$ of heaps. \hypertarget{automorphism_group}{}\subsection*{{Automorphism group}}\label{automorphism_group} As suggested above, if $G$ is a group and we define $t(a,b,c) = a b^{-1} c$, then $G$ becomes a heap. This construction defines a functor $Prin:Grp\to Heap$. In fact, up to isomorphism, all heaps arise in this way; to every heap is associated a group $Aut(H)$ called its \emph{automorphism group}, unique up to isomorphism. There are a number of ways to define $Aut(H)$ from $H$. \begin{enumerate}% \item If we choose an arbitrary element $e\in H$, then we can define a multiplication on $H$ by $a b = t(a,e,b)$. It is straightforward to verify that this defines a group structure on $H$, whose underlying heap structure is the original one. \item We can define $Aut(H)$ to be the set of pairs $(a,b)\in H\times H$, modulo the [[equivalence relation]] $(a,b)\sim (a',b')$ iff $t(a,a',b')=b$. (We think of $(a,b)$ as representing $a^{-1} b$.) We then define multiplication by $(c,d)(a,b) = (c,t(d,a,b))$; the inverse of (the [[equivalence class]] of) $(a,b)$ is (the equivalence class of) $(b,a)$ and the identity element is (the equivalence class of) $(a,a)$ (for any $a$). \item We can also define $Aut(H)$ as an actual subgroup of the [[symmetric group]] of $H$, analogously to [[Cayley's theorem]] (see \href{http://en.wikipedia.org/wiki/Cayley's_theorem}{Wikipedia}) for groups. We take the elements of $Aut(H)$ to be set bijections of the form $t(-,a,b): H \rightarrow H$ where $a,b \in H$, with composition as the group operation. Note that \begin{displaymath} t(-,c,d) \cdot_{Aut(H)} t(-, a,b) = t(t(-,c,d),a,b) = t(-,c,t(d,a,b)), \end{displaymath} so $Aut(H)$ is closed under this operation. The first axiom of a heap shows that $Aut(H)$ contains the identity $t(-,x,x)$ for any $x$), and the inverse of $t(\cdot,a,b)$ is $t(\cdot,b,a)$; thus $Aut(H)$ is a subgroup of the symmetric group of $H$. \end{enumerate} Note that in both the second and third constructions, the elements of $Aut(H)$ are determined by pairs of elements of $H$, modulo some equivalence relation. The following theorem shows that the two equivalence relations are the same. \begin{utheorem} The following are equivalent \begin{enumerate}% \item bijections $t(\cdot,a,b)$ and $t(\cdot,a',b')$ are the same maps, \item $t(a,a',b') = b$, \item $t(b,b',a') = a$. \end{enumerate} \end{utheorem} \begin{proof} (ii) follows from (i) and $t(a,a,b) = b$. (iii) follows from (ii) by applying $t(\cdot,b',a')$ on the right. Similarly (ii) follows from (iii). (i) follows from (ii) by the calculation: \begin{displaymath} t(x,a',b') = t(t(x,a,a),a',b')= t(x,a,t(a,a',b')) = t(x,a,b). \end{displaymath} \end{proof} The composition laws are also easily seen to agree, so the second two constructions of $Aut(H)$ are canonically isomorphic. To compare them to the first construction, observe that for a fixed $e\in H$, any equivalence class contains a unique pair of the form $(e,a)$. (If $(b,c)$ is in the equivalence class, then $a$ is determined by $a = t(e,b,c)$.) This sets up a bijection between the first two constructions, which we can easily show is an isomorphism. The second two constructions are clearly functorial, so we have a functor $Aut:Heap\to Grp$. Note that we have $Aut(Prin(G))\cong G$ for any group $G$, and $Prin(Aut(H))\cong H$ for any heap $H$, but while the first isomorphism is natural, the second is not. In particular, the categories $Heap$ and $Grp$ are not [[equivalence of categories|equivalent]]. \hypertarget{heaps_and_torsors}{}\subsection*{{Heaps and torsors}}\label{heaps_and_torsors} Note that $Aut(H)$ comes equipped with a canonical action on $H$ (this is most clear from the third definition). This action is transitive (by $t(a,a,b) = b$) and free (if $t(a,b,c) = a$ then by the previous statement $t(x,b,c) = x$ for each $x$, and in particular $t(b,b,c) = b$ and also $t(b,b,c) = c$). Therefore, $H$ is an $Aut(H)$-[[torsor]] (over a point). Conversely, a torsor $H$ over any group $G$ can be made into a heap, by defining $t(a,b,c) = g\cdot c$, where $g\in G$ is the unique group element such that $g\cdot b = a$. In fact, the category $Heap$ is equivalent to the following category $Tors$: its objects are pairs $(G,H)$ consisting of a group $G$ and a $G$-torsor $H$, and its morphisms are pairs $(\phi,f):(G,H)\to (G',H')$ consisting of a group homomorphism $\phi:G\to G'$ and a $\phi$-equivariant map $f:H\to H'$. \hypertarget{empty}{}\subsection*{{The empty heap}}\label{empty} If we wish $Heap$ to be an [[algebraic category]], then we must remove the clause that the underlying set of a heap must be nonempty. Then the [[empty set]] becomes a heap in a unique way. However, in this case, the various theorems relating heaps to groups above all break down. For this reason, one usually requires a heap to be inhabited. On the other hand, we could generalize the notion of [[group]] to allow for an empty group. This even remains a purely algebraic notion: we can define a group as a (traditionally nonempty) set equipped with a binary operation (to be thought of as $a, b \mapsto a/b \coloneqq a b^{-1}$) satisfying these laws: \begin{itemize}% \item $a/a = b/b$, \item $(a/a)/((a/a)/a) = a$, \item $a/(b/c) = (a/((c/c)/c))/b$. \end{itemize} Then any possibly-empty-group is a possibly-empty-heap, and every possibly-empty-heap arises in this way from its automorphism possibly-empty-group (defined by either method (2) or (3)); the category of possibly-empty-heaps is equivalent to the category of possibly-empty-groups equipped with torsors over the point; etc. This is even [[constructive mathematics|constructive]]; the theorems can be proved uniformly, rather than by treating the empty and inhabited cases separately. (This rather trivial method is obvious to a classical mathematician, but it's not constructively valid, since a possibly-empty-group/heap as defined here can't be constructively proved empty or inhabited; it can only be proved empty iff not inhabited. Indeed, taking any group $G$ and any [[truth value]] $P$, the possibly-empty-subgroup $\{x \in G \;|\; P\}$ is empty or inhabited iff $P$ is false or true.) \hypertarget{references_and_remarks}{}\subsection*{{References and remarks}}\label{references_and_remarks} \begin{itemize}% \item G.M. Bergman, A.O. Hausknecht, \emph{Cogroups and co-rings in categories of associative rings}, Ch.IV, paragraph 22, p.95ff -- Providence, R.I. : AMS 1996. \item Z. \v{S}koda, \emph{Quantum heaps, cops and heapy categories}, Mathematical Communications 12, No. 1, pp. 1--9 (2007); (\href{http://arxiv.org/abs/math.QA/0701749}{math.QA/0701749}) \item \href{http://en.wikipedia.org/wiki/Heap_%28mathematics%29}{wikipedia:heap} \item \href{http://www.math.ucr.edu/home/baez/torsors.html}{Heaps and torsors} \end{itemize} There is an oidification ([[horizontal categorification]]) of a heap, sometimes called a \emph{heapoid}. [[!redirects groud]] [[!redirects grouds]] [[!redirects heap]] [[!redirects heaps]] [[!redirects Heap]] \end{document}