\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{heterotic M-theory on ADE-orbifolds} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{DualStringTheoryPerspectives}{Dual string theory perspectives}\dotfill \pageref*{DualStringTheoryPerspectives} \linebreak \noindent\hyperlink{HetEWithADESingularities}{$HET_{E}$-Theory on ADE-singularities}\dotfill \pageref*{HetEWithADESingularities} \linebreak \noindent\hyperlink{TypeIPrimeWithD6OnO8}{$I'$-Theory with D6-branes on O8-planes}\dotfill \pageref*{TypeIPrimeWithD6OnO8} \linebreak \noindent\hyperlink{IPrimeTheoryOnADESingularitiesIntersectingO8Planes}{$I'$-theory on ADE-singularities intersecting O8-planes}\dotfill \pageref*{IPrimeTheoryOnADESingularitiesIntersectingO8Planes} \linebreak \noindent\hyperlink{GeometricEngineeringOfDIs6NIs1SCFTs}{Geometric engineering of $D = 6$ $N=(1,0)$ SCFTs on M5-branes}\dotfill \pageref*{GeometricEngineeringOfDIs6NIs1SCFTs} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{as_theory_with_adesingularities}{As $HET_E$-theory with ADE-singularities}\dotfill \pageref*{as_theory_with_adesingularities} \linebreak \noindent\hyperlink{as_theory_with_d6branes}{As $I'$-theory with D6-branes}\dotfill \pageref*{as_theory_with_d6branes} \linebreak \noindent\hyperlink{as_theory_with_adesingularities_2}{As $I'$-theory with ADE-singularities}\dotfill \pageref*{as_theory_with_adesingularities_2} \linebreak \noindent\hyperlink{ftheory_perspective}{F-theory perspective}\dotfill \pageref*{ftheory_perspective} \linebreak \noindent\hyperlink{ReferencesGeometricEngineeringOfDIs6NIs1SCFT}{Geometric engineering of $D=6, \mathcal{N}=(1,0)$ SCFT}\dotfill \pageref*{ReferencesGeometricEngineeringOfDIs6NIs1SCFT} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[KK-compactification]] of [[M-theory]] on [[fibers]] \begin{displaymath} S^1 \!\sslash\! G_{HW} \times \mathbb{H}\!\sslash\! G_{ADE} \end{displaymath} which are, locally, the [[Cartesian product]] of \begin{enumerate}% \item the [[circle]] [[orientifold|orientifolded]] by $G_{HW} \simeq \mathbb{Z}_2$ as in [[Horava-Witten theory]]; \item the [[quaternions]] [[orbifold|orbifolded]] by a [[finite subgroup of SU(2)]] $G_{ADE}$. \end{enumerate} (\hyperlink{Sen97}{Sen 97, Sec 3}, \hyperlink{FLO99}{Faux-Lüst-Ovrut 99}, \hyperlink{KSTY99}{Kaplunovsky-Sonnenschein-Theisen-Yankielowicz 99}, \hyperlink{FLO00a}{Faux-Lüst-Ovrut 00a}, \hyperlink{FLO00b}{00b}, \hyperlink{FLO00c}{00c}) \begin{quote}% graphics grabbed from \hyperlink{HSS18}{HSS18, Example 2.2.7} \end{quote} For $G_{ADE} = \mathbb{Z}_2$ this subsumes M-theory on [[K3]] times $S^1 \sslash G_{HW}$ (\hyperlink{SeibergWitten96}{Seiberg-Witten 96}) $\backslash$linebreak \hypertarget{DualStringTheoryPerspectives}{}\subsection*{{Dual string theory perspectives}}\label{DualStringTheoryPerspectives} Under [[duality in string theory]] (specifically: [[duality between M-theory and type IIA string theory]] and [[duality between M-theory and heterotic string theory]]) M-theory on $\mathbb{S}^{1}\sslash \mathbb{Z}_2^{HW} \times \mathbb{T}^{4}\sslash G^{ADE}$ appears through the following [[string theory]]-perspectives \begin{enumerate}% \item \hyperlink{HetEWithADESingularities}{$HET_{E}$-Theory on ADE-singularities} \item \hyperlink{TypeIPrimeWithD6OnO8}{$I'$-Theory with D6-branes on O8-planes} \item \hyperlink{IPrimeTheoryOnADESingularitiesIntersectingO8Planes}{$I'$-Theory on ADE-singularities intersecting O8-planes} \end{enumerate} The following graphics shows how the three perspectives arise from [[KK-compactification]] on three different choices of [[circle]]-[[fibers]]. Indicated also are the [[M5-branes]] and their string theoretic images at [[NS5-branes]]/[[D4-branes]] with [[geometric engineering of QFTs|geometrically engineer]] [[D=6 N=(1,0) SCFTs]] (see \hyperlink{GeometricEngineeringOfDIs6NIs1SCFTs}{further below}). \begin{quote}% graphics grabbed from \hyperlink{SatiSchreiber19}{SS19} \end{quote} \hypertarget{HetEWithADESingularities}{}\subsubsection*{{$HET_{E}$-Theory on ADE-singularities}}\label{HetEWithADESingularities} (\ldots{}) [[Horava-Witten theory]], hence [[heterotic string theory]], on [[ADE-singularities]] $\mathbb{H} \sslash G_{ADE}$ (\hyperlink{Witten99}{Witten 99},\ldots{}) (\ldots{}) \hypertarget{TypeIPrimeWithD6OnO8}{}\subsubsection*{{$I'$-Theory with D6-branes on O8-planes}}\label{TypeIPrimeWithD6OnO8} \begin{quote}% from \hyperlink{GKSTY02}{GKSTY 02} \end{quote} If in addition the [[black brane|black]] [[NS5-brane]] sits at an [[O8-plane]], hence at the [[orientifold]] [[fixed point]]-locus, then in the ordinary $\mathbb{Z}/2$-[[quotient]] it appears as a ``[[half-brane]]'' -- the [[half M5-brane]] -- with only one copy of [[D6-branes]] ending on it: \begin{quote}% graphics grabbed from \hyperlink{GKSTY02}{GKSTY 02} \end{quote} (In \hyperlink{HananyZaffaroni99}{Hanany-Zaffaroni 99} this is interpreted in terms of the [[`t Hooft-Polyakov monopole]].) The lift to [[M-theory]] of this situation is an [[M5-brane]] [[brane intersection|intersecting]] an [[M9-brane]] (see at \emph{[[M-theory on S1/G}HW times H/G\_ADE]]\_): \begin{quote}% from \hyperlink{GKSTY02}{GKSTY 02} \end{quote} Alternatively the [[O8-plane]] may [[brane intersection|intersect]] the [[black brane|black]] [[D6-branes]] away from the [[black brane|black]] [[NS5-brane]]: \begin{quote}% from \hyperlink{HKLY15}{HKLY 15} \end{quote} In general, some of the NS5 sit away from the [[O8-plane]], while some sit on top of it: \begin{quote}% from \hyperlink{HananyZaffaroni98}{Hanany-Zaffaroni 98} \end{quote} \hypertarget{IPrimeTheoryOnADESingularitiesIntersectingO8Planes}{}\subsubsection*{{$I'$-theory on ADE-singularities intersecting O8-planes}}\label{IPrimeTheoryOnADESingularitiesIntersectingO8Planes} (\hyperlink{BergmanRodriguezGomez12}{Bergman \& Rodriguez-Gomez 12, Sec. 3}) (\ldots{}) \hypertarget{GeometricEngineeringOfDIs6NIs1SCFTs}{}\subsection*{{Geometric engineering of $D = 6$ $N=(1,0)$ SCFTs on M5-branes}}\label{GeometricEngineeringOfDIs6NIs1SCFTs} The [[M5-branes]]-configurations as \hyperlink{DualStringTheoryPerspectives}{above} are supposed to [[geometric engineering of QFTs|geometrically engineer]] [[D=6 N=(1,0) SCFTs]]. See the references \hyperlink{ReferencesGeometricEngineeringOfDIs6NIs1SCFT}{below}, for example \hyperlink{DHTV14}{DHTV 14, Section 6}, \hyperlink{GaiottoTomasiello14}{Gaiotto-Tomasiello 14}, \hyperlink{HKLY15}{HKLY 15}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include KK-compactifications of M-theory -- table]] $\backslash$linebreak [[!include Dp-D(p+4)-brane bound states -- contents]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The first discussion of this compactification is possibly \begin{itemize}% \item [[Ashoke Sen]], Section 3 of: \emph{A Note on Enhanced Gauge Symmetries in M- and String Theory}, JHEP 9709:001,1997 (\href{http://arxiv.org/abs/hep-th/9707123}{arXiv:hep-th/9707123}) \end{itemize} in the context of the [[M-theory lift of gauge enhancement on D6-branes]]. The original articles focusing on this situation: \begin{itemize}% \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], \emph{Intersecting Orbifold Planes and Local Anomaly Cancellation in M-Theory}, Nucl. Phys. B554: 437-483, 1999 (\href{https://arxiv.org/abs/hep-th/9903028}{arXiv:hep-th/9903028}) \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], \emph{Local Anomaly Cancellation, M-Theory Orbifolds and Phase-Transitions}, Nucl. Phys. B589: 269-291, 2000 (\href{https://arxiv.org/abs/hep-th/0005251}{arXiv:hep-th/0005251}) \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], \emph{An M-Theory Perspective on Heterotic K3 Orbifold Compactifications}, Int. J. Mod. Phys. A18:3273-3314, 2003 (\href{https://arxiv.org/abs/hep-th/0010087}{arXiv:hep-th/0010087}) \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], \emph{Twisted Sectors and Chern-Simons Terms in M-Theory Orbifolds}, Int. J. Mod. Phys. A18: 2995-3014, 2003 (\href{https://arxiv.org/abs/hep-th/0011031}{arXiv:hep-th/0011031}) \item [[Vadim Kaplunovsky]], J. Sonnenschein, [[Stefan Theisen]], S. Yankielowicz, \emph{On the Duality between Perturbative Heterotic Orbifolds and M-Theory on $T^4/Z_N$}, Nuclear Physics B Volume 590, Issues 1–2, 4 December 2000, Pages 123-160 Nuclear Physics B (\href{https://arxiv.org/abs/hep-th/9912144}{arXiv:hep-th/9912144}, ) \item E. Gorbatov, [[Vadim Kaplunovsky]], J. Sonnenschein, [[Stefan Theisen]], S. Yankielowicz, \emph{On Heterotic Orbifolds, M Theory and Type I' Brane Engineering}, JHEP 0205:015, 2002 (\href{https://arxiv.org/abs/hep-th/0108135}{arXiv:hep-th/0108135}) \end{itemize} Discussion of [[heterotic M-theory]] on smooth [[K3]] originates around \begin{itemize}% \item [[Nathan Seiberg]], [[Edward Witten]], \emph{Comments on String Dynamics in Six Dimensions}, Nucl. Phys. B471:121-134, 1996 (\href{https://arxiv.org/abs/hep-th/9603003}{arXiv:hep-th/9603003}) \item Zygmunt Lalak, Steven Thomas, \emph{Gaugino Condensation, Moduli Potentials and Supersymmetry Breaking in M-Theory Models}, Nuclear Physics B Volume 515, Issues 1–2, 30 March 1998, Pages 55-72 Nuclear Physics B (\href{https://arxiv.org/abs/hep-th/9707223}{hep-th/9707223}, ) (on [[gaugino condensation]]) \end{itemize} See also \begin{itemize}% \item Jacob Cole Claussen, \emph{The deconstruction of orbifold fixed points in heterotic M-theory}, 2016 (\href{http://hdl.handle.net/2152/41748}{hdl:2152/41748}) \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], Example 2.2.7 of: \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]}, CMP (2019) (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}, \href{http://link.springer.com/article/10.1007/s00220-019-03442-3}{doi:10.1007/s00220-019-03442-3}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], Section 4 of: \emph{[[schreiber:Super-exceptional embedding construction of the M5-brane|Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5]]} (\href{https://arxiv.org/abs/1908.00042}{arXiv:1908.00042}) \item [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], Section 4.1 of: \emph{[[schreiber:Equivariant Cohomotopy implies orientifold tadpole cancellation]]} (\href{https://arxiv.org/abs/1909.12277}{arXiv:1909.12277}) \end{itemize} \hypertarget{as_theory_with_adesingularities}{}\subsubsection*{{As $HET_E$-theory with ADE-singularities}}\label{as_theory_with_adesingularities} As [[heterotic string theory]] on [[orbifold]] [[ADE-singularities]]: \begin{itemize}% \item [[Edward Witten]], \emph{Heterotic String Conformal Field Theory And A-D-E Singularities}, JHEP 0002:025, 2000 (\href{https://arxiv.org/abs/hep-th/9909229}{arXiv:hep-th/9909229}) \end{itemize} \hypertarget{as_theory_with_d6branes}{}\subsubsection*{{As $I'$-theory with D6-branes}}\label{as_theory_with_d6branes} As [[type I' string theory]] with [[D6-branes]]: \begin{itemize}% \item [[Ilka Brunner]], [[Andreas Karch]], \emph{Branes at Orbifolds versus Hanany Witten in Six Dimensions}, JHEP 9803:003, 1998 (\href{https://arxiv.org/abs/hep-th/9712143}{arXiv:hep-th/9712143}) \item [[Amihay Hanany]], [[Alberto Zaffaroni]], \emph{Branes and Six Dimensional Supersymmetric Theories}, Nucl.Phys. B529 (1998) 180-206 (\href{https://arxiv.org/abs/hep-th/9712145}{arXiv:hep-th/9712145}) \item [[Amihay Hanany]], [[Alberto Zaffaroni]], \emph{Monopoles in String Theory}, JHEP 9912 (1999) 014 (\href{https://arxiv.org/abs/hep-th/9911113}{arXiv:hep-th/9911113}) \item Hirotaka Hayashi, Sung-Soo Kim, Kimyeong Lee, Masato Taki, Futoshi Yagi, \emph{A new 5d description of 6d D-type minimal conformal matter}, JHEP 1508:097, 2015 (\href{https://arxiv.org/abs/1505.04439}{arXiv:1505.04439}) \item Ibrahima Bah, Achilleas Passias, [[Alessandro Tomasiello]], \emph{$AdS_5$ compactifications with punctures in massive IIA supergravity}, JHEP11 (2017)050 (\href{https://arxiv.org/abs/1704.07389}{arXiv:1704.07389}) \end{itemize} \hypertarget{as_theory_with_adesingularities_2}{}\subsubsection*{{As $I'$-theory with ADE-singularities}}\label{as_theory_with_adesingularities_2} As [[type I' string theory]] at [[orbifold]] [[ADE-singularities]]: \begin{itemize}% \item [[Oren Bergman]], Diego Rodriguez-Gomez, Section 3 of: \emph{5d quivers and their $AdS_6$ duals}, JHEP07 (2012) 171 (\href{https://arxiv.org/abs/1206.3503}{arxiv:1206.3503}) \item Chiung Hwang, Joonho Kim, Seok Kim, Jaemo Park, Section 3.4.2 of: \emph{General instanton counting and 5d SCFT}, JHEP07 (2015) 063 (\href{https://arxiv.org/abs/1406.6793}{arxiv:1406.6793}) \end{itemize} \hypertarget{ftheory_perspective}{}\subsubsection*{{F-theory perspective}}\label{ftheory_perspective} The [[F-theory]] perspective: \begin{itemize}% \item Monika Marquart, [[Daniel Waldram]], \emph{F-theory duals of M-theory on $S^1/\mathbb{Z}_2 \times T^4 / \mathbb{Z}_N$} (\href{https://arxiv.org/abs/hep-th/0204228}{arXiv:hep-th/0204228}) \item Christoph Lüdeling, Fabian Ruehle, \emph{F-theory duals of singular heterotic K3 models}, Phys. Rev. D 91, 026010 (2015) (\href{https://arxiv.org/abs/1405.2928}{arXiv:1405.2928}) \end{itemize} \hypertarget{ReferencesGeometricEngineeringOfDIs6NIs1SCFT}{}\subsubsection*{{Geometric engineering of $D=6, \mathcal{N}=(1,0)$ SCFT}}\label{ReferencesGeometricEngineeringOfDIs6NIs1SCFT} On [[D=6 N=(1,0) SCFTs]] via [[geometric engineering of QFT|geometric engineering]] on [[M5-branes]]/[[NS5-branes]] at D-, E-type [[ADE-singularities]], notably from [[M-theory on S1/G\_HW times H/G\_ADE]], hence from [[orbifolds]] of [[type I' string theory]] (see at \href{NS5-brane#NSHalfBranes}{half NS5-brane}): \begin{itemize}% \item Michele Del Zotto, [[Jonathan Heckman]], [[Alessandro Tomasiello]], [[Cumrun Vafa]], Section 6 of: \emph{6d Conformal Matter}, JHEP02(2015)054 (\href{https://arxiv.org/abs/1407.6359}{arXiv:1407.6359}) \item [[Davide Gaiotto]], [[Alessandro Tomasiello]], \emph{Holography for $(1,0)$ theories in six dimensions}, JHEP12(2014)003 (\href{https://arxiv.org/abs/1404.0711}{arXiv:1404.0711}) \item Kantaro Ohmori, Hiroyuki Shimizu, \emph{$S^1/T^2$ Compactifications of 6d $\mathcal{N} = (1,0)$ Theories and Brane Webs}, J. High Energ. Phys. (2016) 2016: 24 (\href{https://arxiv.org/abs/1509.03195}{arXiv:1509.03195}) \item Hirotaka Hayashi, Sung-Soo Kim, Kimyeong Lee, Futoshi Yagi, \emph{6d SCFTs, 5d Dualities and Tao Web Diagrams}, JHEP05 (2019)203 (\href{https://arxiv.org/abs/1509.03300}{arXiv:1509.03300}) \item Ibrahima Bah, Achilleas Passias, [[Alessandro Tomasiello]], \emph{$AdS_5$ compactifications with punctures in massive IIA supergravity}, JHEP11 (2017)050 (\href{https://arxiv.org/abs/1704.07389}{arXiv:1704.07389}) \item Santiago Cabrera, [[Amihay Hanany]], Marcus Sperling, \emph{Magnetic Quivers, Higgs Branches, and 6d $\mathcal{N}=(1,0)$ Theories}, J. High Energ. Phys. (2019) 2019: 71 (\href{https://arxiv.org/abs/1904.12293}{arXiv:1904.12293}) \end{itemize} [[!redirects heterotic M-theory on ADE-singularities]] [[!redirects M-theory on S1/G\_HW times H/G\_ADE]] \end{document}