\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher Atiyah groupoid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{GeneralIdea}{General idea}\dotfill \pageref*{GeneralIdea} \linebreak \noindent\hyperlink{InHigherPrequantumGeometryMotivationAndSurvey}{In higher prequantum geometry: motivation and survey}\dotfill \pageref*{InHigherPrequantumGeometryMotivationAndSurvey} \linebreak \noindent\hyperlink{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices}{Ordinary prequantum geometry in terms of automorphisms in slices}\dotfill \pageref*{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices} \linebreak \noindent\hyperlink{TheNeedForHigherPrequantumBundles}{The need for higher prequantum bundles}\dotfill \pageref*{TheNeedForHigherPrequantumBundles} \linebreak \noindent\hyperlink{brief_recollection_higher_geometry}{Brief recollection: Higher geometry}\dotfill \pageref*{brief_recollection_higher_geometry} \linebreak \noindent\hyperlink{higher_atiyah_groupoids}{Higher Atiyah groupoids}\dotfill \pageref*{higher_atiyah_groupoids} \linebreak \noindent\hyperlink{the_central_theorem_quantomorphism_group_extensions}{The central theorem: Quantomorphism $\infty$-group extensions}\dotfill \pageref*{the_central_theorem_quantomorphism_group_extensions} \linebreak \noindent\hyperlink{examples__and__as_heisenberg_groups}{Examples: $String$ and $Fivebrane$ as Heisenberg $\infty$-groups}\dotfill \pageref*{examples__and__as_heisenberg_groups} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{equivalence_of_atiyahgroupoid_bisections_to_slice_automorphisms}{Equivalence of Atiyah-groupoid bisections to slice automorphisms}\dotfill \pageref*{equivalence_of_atiyahgroupoid_bisections_to_slice_automorphisms} \linebreak \noindent\hyperlink{SequencesOfInclusionsOfGroupsOfBisections}{Sequences of inclusions of Atiyah-bisection $\infty$-groups}\dotfill \pageref*{SequencesOfInclusionsOfGroupsOfBisections} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{TheTraditionalAtiyagLieGroupoid}{The traditional Atiyah Lie groupoid}\dotfill \pageref*{TheTraditionalAtiyagLieGroupoid} \linebreak \noindent\hyperlink{TheTraditionalCourantLie2Algebroid}{The traditional Courant Lie 2-algebroid}\dotfill \pageref*{TheTraditionalCourantLie2Algebroid} \linebreak \noindent\hyperlink{TheTraditionalQuantomorphismGroup}{The traditional quantomorphism group}\dotfill \pageref*{TheTraditionalQuantomorphismGroup} \linebreak \noindent\hyperlink{TheQuantomorphismNGroups}{The quantomorphism $n$-groups}\dotfill \pageref*{TheQuantomorphismNGroups} \linebreak \noindent\hyperlink{TheTraditionalHeisenbergGroup}{The traditional Heisenberg group}\dotfill \pageref*{TheTraditionalHeisenbergGroup} \linebreak \noindent\hyperlink{TheHeisenbergnGroup}{The Heisenberg $n$-group}\dotfill \pageref*{TheHeisenbergnGroup} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} We discuss a refinement of the traditional notion of \emph{[[Atiyah Lie groupoids]]} (the [[Lie groupoids]] which are the [[Lie integration]] of [[Atiyah Lie algebroids]] of $G$-[[principal bundles]]) from [[differential geometry]] to [[higher differential geometry]] and generally to [[higher geometry]]. \begin{itemize}% \item \emph{\hyperlink{GeneralIdea}{General idea}} \item \emph{\hyperlink{InHigherPrequantumGeometryMotivationAndSurvey}{In higher prequantum geometry: motivation and survey}} \end{itemize} \hypertarget{GeneralIdea}{}\subsubsection*{{General idea}}\label{GeneralIdea} Briefly, for $G$ an [[∞-group]] in an [[(∞,1)-topos]] and $P \to X$ a $G$-[[principal ∞-bundle]], its \emph{higher Atiyah groupoid} is the [[groupoid object in an (∞,1)-category|groupoid object]] $At(P)$ such that the \begin{itemize}% \item object of [[objects]] is $X$; \item object of [[morphisms]] is the collection of all $G$-equivariant maps between all pairs of [[fibers]] of $P$. \end{itemize} In these vague words this is precisely the same description as for the traditional Atiyah groupoid. Definition \ref{HigherAtiyahGroupoid} below makes precise what this means in [[higher geometry]]. Besides generalizing the traditional definition to [[homotopy theory]], the notion of higher Atiyah groupoids also generalizes from [[concrete objects]] such as [[Lie groups]] to general objects in an [[(∞,1)-topos]] (general [[∞-stacks]], not necessarily ``supported on points''), notably to \emph{[[moduli ∞-stacks]]} for [[cocycles]] in [[differential cohomology]]. For instance if we assume that the ambient [[(∞,1)-topos]] $\mathbf{H}$ is [[cohesive (∞,1)-topos|cohesive]] and consider $\mathbb{G} \in \mathrm{Grp}(\mathbf{H})$ a \emph{[[sylleptic ∞-group]]}, then there is the [[moduli ∞-stack]] $\mathbf{B}\mathbb{G}_{\mathrm{conn}}$ of \emph{$\mathbb{G}$-[[principal ∞-connections]]} and this is itself again a [[group object in an (∞,1)-category|group object]]. A $(\mathbf{B}\mathbb{G}_{\mathrm{conn}})$-[[principal ∞-bundle]] is equivalently a $(\mathbf{B}^2\mathbb{G})$-[[principal ∞-connection]] ``without [[curving]]''. For instance if $\mathbb{G} = U(1)$ is the [[circle group]] in [[smooth ∞-groupoids]], then $\mathbf{B}(\mathbf{B}\mathbb{G}_{\mathrm{conn}})$ classifies [[circle 2-bundle with connection]] without 2-form part: in parts of the literature this is known as ``[[bundle gerbes]] with connective structure but without [[curving]]''. So the general definition considered here assigns a higher Atiyah groupoid to a ``bundle gerbe with connective structure but no [[curving]]''. It turns out that this is the \emph{[[Courant 2-groupoid]]} which [[Lie integration|Lie integrates]] the [[standard Courant Lie 2-algebroid]] traditionally induced by this data. The notion of higher Atiyah groupoids is more general still: the definition does not really require that the object fed into the construction is a plain [[principal ∞-bundle]]. It may notably also be a genuine [[principal ∞-connection]] (hence \emph{with} ``[[curving]]''). We show below that the corresponding higher Atiyah groupoid is that groupoid object whose [[∞-group of bisections]] is the [[quantomorphism n-group]] of the principal $\infty$-connection regarded as a [[prequantum n-bundle]]. In summary, the [[higher geometry|higher geometric]] generalization of the notion of Atiyah groupoids unifies all three of the traditional notions of [[Atiyah groupoid]], of [[Courant 2-groupoid]] and of [[quantomorphism group]] and refines each of these to [[higher geometry]]: [[!include higher Atiyah groupoid - table]] At the same time the definition of higher Atiyah groupoids in [[(∞,1)-topos theory]], def. \ref{HigherAtiyahGroupoid} below, is very simple, almost tautological, identifying it as a very fundamental notion in [[(∞,1)-topos theory]]/[[homotopy type theory]]. \hypertarget{InHigherPrequantumGeometryMotivationAndSurvey}{}\subsubsection*{{In higher prequantum geometry: motivation and survey}}\label{InHigherPrequantumGeometryMotivationAndSurvey} Higher Atiyah groupoids play a central role in [[higher prequantum geometry]]. \begin{quote}% under construction \end{quote} \hypertarget{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices}{}\paragraph*{{Ordinary prequantum geometry in terms of automorphisms in slices}}\label{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices} A sequence of time-honored traditional concepts in [[geometric quantization]]/[[prequantum geometry]] is \begin{tabular}{l|l|l|l|l|l} [[Lie groups]]:&[[Heisenberg group]]&$\hookrightarrow$&[[quantomorphism group]]&$\hookrightarrow$&[[gauge group]]\\ \hline [[Lie algebras]]:&[[Heisenberg Lie algebra]]&$\hookrightarrow$&[[Poisson Lie algebra]]&$\hookrightarrow$&twisted [[vector fields]]\\ \end{tabular} For instance in the [[geometric quantization]] of the [[electromagnetic field|electrically]] [[charged particle|charted]] [[particle]] [[sigma-model]] we have a [[prequantum circle bundle]] $P$ with [[connection on a bundle]] $\nabla$ on a [[cotangent bundle]] $X = T^* Y$ which is essentially the [[pullback]] of the [[electromagnetic field]]-bundle on [[target space|target]] [[spacetime]] $Y$. Its \emph{[[quantomorphism group]]} is the group of [[diffeomorphisms]] $P \stackrel{\simeq}{\to} P$ of the total space of the prequantum bundle which preserve the connection (also called the \emph{[[contactomorphism]]} of $(P,\nabla)$ regarded as a [[regular contact manifold]]). For the following it is convenient to say this using the language of \emph{[[moduli stacks]]}: we may regard $X$ as a [[representable functor|representable]] [[sheaf]] on the [[site]] of [[smooth manifolds]] (a ``[[smooth space]]'') and then moreover as a [[representable functor|representable]] [[stack]] on this site (a ``[[smooth groupoid]]'') and make use of the tautological existence of the [[moduli stack]] of $U(1)$-[[principal connections]], which we write $\mathbf{B}U(1)_{conn}$ (we don't need further details right now, but they can be found for instance at \emph{[[circle n-bundle with connection]]} for details). By definition this is such that for any $X$ a map $\nabla \colon X \to \mathbf{B}U(1)_{conn}$ is equivalently a $U(1)$-[[principal connection]] and such that a [[homotopy]] $\eta \colon \nabla_1 \to \nabla_2$ between two such maps is equivalently a [[gauge transformation]] between two such connections. With this formulation a [[quantomorphism]] of the [[prequantum bundle]] $\nabla$ is equivalently a diagram of the form as on the right of \begin{displaymath} \mathbf{QuantMorph}(\nabla) = \left\{ \itexarray{ X &&\underoverset{\simeq}{\phi}{\to}&& X \\ & \searrow &\swArrow_{\eta}& \swarrow \\ && \mathbf{B}U(1)_{conn} } \right\} \end{displaymath} in the [[(2,1)-category]] of [[stacks]], namely a [[diffeomorphism]] $\phi \colon X \stackrel{\simeq}{\to} X$ of the base space of the bundle together with a [[gauge transformation]] of $U(1)$-[[principal connections]] $\eta \colon \phi^* \nabla \stackrel{\simeq}{\to} \nabla$. The [[quantomorphism group]] is naturally an ([[infinite-dimensional Lie group|infinite dimensional]]) [[Lie group]]. Its [[Lie algebra]] is the [[Poisson bracket]] [[Lie algebra]]. If $X$ is equipped with the structure of a [[Lie group]] itself (notably if it is a [[vector space]]), then the sub-Lie algebra of that on the [[invariant differential form|invariant vectors]] is the [[Heisenberg Lie algebra]] and the Lie group corresponding to that is the [[Heisenberg group]]. One also says that a triangular diagram as above is an autoequivalence of the ``modulating'' map $\nabla \colon X \to \mathbf{B}U(1)_{conn}$ in the \emph{[[slice (infinity,1)-category|slice (2,1)-category]]} of [[stacks]]/[[smooth groupoids]] over $\mathbf{B}U(1)_{conn}$. Such autoequivalences in slices are familiar from basic concepts of [[Lie groupoid]] theory. For $\mathcal{G} = (\mathcal{G}_1 \stackrel{\to}{\to} \mathcal{G}_0)$ a [[Lie groupoid]], we may regard the inclusion of its manifold of objects as an [[atlas]] being a map $p_\mathcal{G} \colon\mathcal{G}_0 \to \mathcal{G}$. Regarding this atlas as an object in the [[slice (infinity,1)-category|slice (2,1)-category]] of [[stacks]]/[[smooth groupoids]] over $\mathcal{G}$, its autoequivalences are diagrams as on the right of \begin{displaymath} \mathbf{BiSect}(p_{\mathcal{G}}) = \left\{ \itexarray{ \mathcal{G}_0 &&\stackrel{\phi}{\to}&& \mathcal{G}_0 \\ & \searrow &\swArrow_\eta & \swarrow \\ && \mathcal{G} } \right\} \,. \end{displaymath} This is a [[diffeomorphism]] $\phi \colon \mathcal{G}_0 \stackrel{\simeq}{\to} \mathcal{G}_0$ of the [[smooth manifold]] of [[objects]] equipped with a [[natural transformation]] $\eta$ whose component map is a [[smooth function]] that assigns to each point $q \in \mathcal{G_0}$ a [[morphism]] in $\mathcal{G}$ of the form $\eta_q \colon q \to \phi(q)$. This collection of data is known as a \emph{[[bisection]]} of a [[Lie groupoid]]. Bisections naturally form a group $\mathbf{BiSect}(p_{\mathcal{G}})$ , which is all the more manifest if we understand them as autoequivalences of the atlas in the slice, called the [[group of bisections]]. This perspective of regarding maps of [[smooth groupoids]] as objects in the slice over their codomain (an elementary step in [[higher category theory]]/[[(infinity,1)-topos theory|higher topos theory]], but not common in traditional differential geometry) turns out to be useful and drives all of the refinements, generalizations and theorems that we discuss in the following: we will see that higher [[prequantum geometry]] is essentially the geometry insice [[slice (infinity,1)-topos|higher slice categories]] of [[infinity-stack|higher stacks]] over [[moduli infinity-stack|higher moduli stacks]] of [[principal infinity-connection|higher principal connections]]. Before we get there, notice the following\ldots{} \hypertarget{TheNeedForHigherPrequantumBundles}{}\paragraph*{{The need for higher prequantum bundles}}\label{TheNeedForHigherPrequantumBundles} The tools of [[geometric quantization]] mainly apply to [[quantum mechanics]] and only partially to [[quantum field theory]]. In particular in the context of \emph{[[extended prequantum field theory]]} in [[dimension]] $n$ a [[prequantum bundle]] over the ([[phase space|phase]]-)space of [[field (physics)|fields]] is to be refined (de-[[transgression|transgressed]]) to a \emph{[[prequantum n-bundle]]} over the [[moduli ∞-stack]] of [[field (physics)|fields]]. Therefore in order to apply [[geometric quantization]] to [[extended prequantum field theory]] to obtain [[extended quantum field theory]] we first need extended/higher prequantum geometry. For instance the [[prequantum n-bundle|prequantum 3-bundle]] for standard [[3d Chern-Simons theory|3d]] [[Spin group]] [[Chern-Simons theory]] is modulated by the differential [[smooth first fractional Pontryagin class]] \begin{displaymath} \itexarray{ \mathbf{B}Spin_{conn} &\stackrel{\tfrac{1}{2}\hat \mathbf{p}_1}{\to}& \mathbf{B}^3 U(1)_{conn} \\ \downarrow && \downarrow & forget \; connections \\ \mathbf{B}Spin &\stackrel{\tfrac{1}{2}\mathbf{p}_1}{\to}& \mathbf{B}^3 U(1) \\ \downarrow && \downarrow & geometric\;realization \\ B Spin &\stackrel{\tfrac{1}{2}p_1}{\to}& K(\mathbb{Z},4) } \,, \end{displaymath} modulating/clsasifying the universal \emph{[[Chern-Simons circle 3-bundle with connection]]} (also known as a \emph{[[bundle 2-gerbe]]}) over the [[moduli stack]] of [[field (physics)|fields]] of $G$-Chern-Simons theory, which is the moduli stack $\mathbf{B}G_{conn}$ of $G$-[[principal connection]]. Similarly the [[prequantum n-bundle|prequantum 7-bundle]] for [[7d Chern-Simons theory]] on [[string 2-group]] [[principal infinity-connections|principal 2-connections]] is given by the differential [[smooth second fractional Pontryagin class]] \begin{displaymath} \itexarray{ \mathbf{B}String_{conn} &\stackrel{\frac{1}{6}\hat \mathbf{p}_2}{\to}& \mathbf{B}^7 U(1)_{conn} \\ \downarrow && \downarrow & forget\; connections \\ \mathbf{B}String &\stackrel{\frac{1}{6}\mathbf{p}_2}{\to}& \mathbf{B}^7 U(1) \\ \downarrow && \downarrow & geometric\; realization \\ B String &\stackrel{\frac{1}{6}p_2}{\to}& K(\mathbb{Z},8) } \,, \end{displaymath} modulating/classifying the universal \emph{[[Chern-Simons circle 7-bundle with connection]]} over the moduli 2-stack $\mathbf{B}String_{conn}$ of [[string 2-group]] [[principal infinity-connection|principal 2-connections]]. Therefore we want to lift the \hyperlink{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices}{above} table of traditional notions to [[higher geometry]]\ldots{} \hypertarget{brief_recollection_higher_geometry}{}\paragraph*{{Brief recollection: Higher geometry}}\label{brief_recollection_higher_geometry} In order to say this, clearly we need some basics of [[higher geometry]]\ldots{} \begin{displaymath} \itexarray{ && Groupoids \\ & \swarrow && \searrow^{\mathrlap{nerve}} \\ Categories && && Kan complexes \\ & \searrow && \swarrow \\ && (\infty,1)-Categories } \,. \end{displaymath} Important construction principle for [[(∞,1)-categories]]: [[simplicial localization]]. For $\mathcal{C}$ a [[category]] with some subset of morphisms $W \hookrightarrow Mor(\mathcal{C})$ declared to be ``[[weak equivalences]]'', the [[simplicial localization]] \begin{displaymath} L_W \mathcal{C} \in (\infty,1)Cat \end{displaymath} is the [[universal construction|universal]] $(\infty,1)$-category obtained from $\mathcal{C}$ by universally turning each weak equivalence into an actual [[homotopy equivalence]] in the sense of [[homotopy theory]]. In particular let $C$ be a [[site]], assumed for simplicity to have [[point of a topos|enough points]]. Declare then that in the [[functor category]] $Func(C^{op}, KanCplx)$, hence in [[Kan complex]]-valued presheaves, the weak equivalences are the [[stalk|stalkwise]] [[homotopy equivalences]] of Kan complexes. Then \begin{displaymath} \mathbf{H} \coloneqq Sh_{\infty}(C) \coloneqq L_{W} Func(C^{op}, KanCplx) \end{displaymath} is called the \emph{[[(∞,1)-topos]]} of [[(∞,1)-sheaves]]/[[∞-stacks]] on $C$. An [[A-∞ algebra]]-object $G$ in such an $(\infty,1)$-topos such that $\pi_0(G)$ is a [[group]] is called an [[∞-group]] ``with geometric structure as encoded by the test spaces $C$''. The canonical source of $\infty$-groups are the [[homotopy fiber products]] of point inclusions $* \to X$ of any object X, the [[loop space object]] \begin{displaymath} \Omega X \coloneqq {*} \underset{X}{\times} {*} \,. \end{displaymath} In fact this are \emph{all} the [[∞-groups]] that there are, up to equivalence: forimg [[loop space objects]] is an [[equivalence of (∞,1)-categories]] \begin{displaymath} Grp(\mathbf{H}) \stackrel{\overset{\Omega}{\leftarrow}}{\underoverset{\mathbf{B}}{\simeq}{\to}} \mathbf{H}^{*/}_{\geq 1} \end{displaymath} between [[∞-groups]] and [[pointed object|pointed]] [[connected object in an (∞,1)-topos|connected]] objects. The inverse equivalence $\mathbf{B}$ is the \emph{[[delooping]]} operation. We say that such an $(\infty,1)$-topos $\mathbf{H}$ is \emph{[[cohesive]]} if it is equipped with an [[adjoint triple]] of [[idempotent monad|idempotent]] (co)/[[(∞,1)-monads]] \begin{tabular}{l|l|l|l|l} [[shape modality]]&&[[flat modality]]&&[[sharp modality]]\\ \hline idemp. monad&&idemp. comonad&&idemp. monad\\ $\Pi$&$\dashv$&$\flat$&$\dashv$&$\sharp$\\ \end{tabular} This implies (strictly speaking we need [[differential cohesion]] for that, coming from another adjoint triple of (co)monads) that for every [[braided ∞-group]] $\mathbb{G} \in Grp(\mathbf{H})$ there is a canonical object $\mathbf{B}\mathbb{G}_{conn}$ which modulats $\mathbb{G}$-[[principal ∞-connections]]. \hypertarget{higher_atiyah_groupoids}{}\paragraph*{{Higher Atiyah groupoids}}\label{higher_atiyah_groupoids} Looking at the \hyperlink{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices}{above} table and noticing the \hyperlink{TheNeedForHigherPrequantumBundles}{above} need for higher prequantum bundles, we should try to find an analogous table of concepts in [[higher geometry]], something like this: [[!include slice automorphism groups in higher prequantum geometry - table]] (\ldots{}) The way all these notions and theorems work is by considering [[automorphism ∞-groups]] of the classifying (or rather: modulating) maps $\nabla \colon X \to \mathbf{B}\mathbb{G}_{conn}$ of a [[prequantum ∞-bundle]] in the [[slice (∞,1)-topos]] over the domain. For instance \begin{displaymath} \mathbf{QuantMorph}(\nabla) = \left\{ \itexarray{ X && \underoverset{\simeq}{\phi}{\to} && X \\ & {}_{\mathllap{\nabla}}\searrow &\swArrow& \swarrow_{\mathrlap{\nabla}} \\ && \mathbf{B}\mathbb{G}_{conn} } \right\} \,. \end{displaymath} The others are obtained by succesively forgetting connection data. For instance \begin{displaymath} \BiSect(Cou(\nabla)) = \left\{ \itexarray{ X && \underoverset{\simeq}{\phi}{\to} && X \\ & {}_{\mathllap{\nabla_1}}\searrow &\swArrow& \swarrow_{\mathrlap{\nabla_1}} \\ && \mathbf{B}(\mathbf{B}\mathbb{G}_{conn}) } \right\} \,. \end{displaymath} and \begin{displaymath} \BiSect(At(\nabla)) = \left\{ \itexarray{ X && \underoverset{\simeq}{\phi}{\to} && X \\ & {}_{\mathllap{\nabla_0}}\searrow &\swArrow& \swarrow_{\mathrlap{\nabla_0}} \\ && \mathbf{B}\mathbb{G} } \right\} \,. \end{displaymath} The extension sequence is then schematically simply the following \begin{displaymath} \left\{ \itexarray{ && X \\ & \swarrow & & \searrow \\ & \searrow &\swArrow& \swarrow \\ && \mathbf{B}\mathbb{G}_{conn} } \right\} \; \to \; \left\{ \itexarray{ X &&\stackrel{\simeq}{\to}&& X \\ & {}_{\mathllap{\nabla}}\searrow &\swArrow& \swarrow_{\mathrlap{\nabla}} \\ && \mathbf{B}\mathbb{G}_{conn} } \right\} \; \to \; \left\{ \itexarray{ X && \stackrel{\simeq}{\to} && X } \right\} \end{displaymath} in this generality this now includes various other notions, too: [[!include higher Atiyah groupoid - table]] \hypertarget{the_central_theorem_quantomorphism_group_extensions}{}\paragraph*{{The central theorem: Quantomorphism $\infty$-group extensions}}\label{the_central_theorem_quantomorphism_group_extensions} \begin{theorem} \label{}\hypertarget{}{} For $\mathbb{G}$ a [[braided ∞-group]] and $\nabla \colon X \to \mathbf{B}\mathbb{G}_{conn}$ a higher prequantum geometry with respect to $\mathbb{G}$ there is a long [[homotopy fiber sequence]] \begin{displaymath} \left(\Omega \mathbb{G}\right)\mathbf{FlatConn}\left(\nabla\right) \to \mathbf{QuantMorph}(\nabla) \to \mathbf{HamSympl}(\nabla) \stackrel{\nabla \circ (-)}{\to} \mathbf{B}\left(\left(\Omega \mathbb{G}\right)\mathbf{FlatConn}\left(\nabla\right) \right) \,. \end{displaymath} Similarly there is the [[Heisenberg infinity-group]] extension \begin{displaymath} (\Omega \mathbb{G})\mathbf{FlatConn}(X) \to \mathbf{Heis}(\nabla) \to G \end{displaymath} \end{theorem} \begin{theorem} \label{}\hypertarget{}{} The [[Lie differentiation]] of the [[∞-group extension]] sequence of prop. \ref{QuantomorphismExtension} is a [[homotopy fiber sequence]] of [[L-∞ algebras]] \begin{displaymath} \mathbf{H}(X, \flat \mathbf{B}^{n-1}\mathbb{R}) \to \mathfrak{Poisson}(X,\omega) \to \mathcal{X}_{Ham}(X,\omega) \stackrel{\iota_{(-)\omega}}{\to} \mathbf{B}\mathbf{H}(X, \flat \mathbf{B}^{n-1}\mathbb{R}) \,, \end{displaymath} where \begin{itemize}% \item $\mathfrak{Poisson}(X,\omega)$ is the [[Poisson Lie n-algebra]] as defined in (\hyperlink{Rogers11}{Rogers 11}). \item $\mathcal{X}_{Ham}$ is the Lie algebra of [[vector fields]] restricted to the [[Hamiltonian vector fields]]; \item $\mathbf{H}(X, \flat (\mathbf{B}^{n-1})\mathbb{R})$ is the [[chain complex]] for flat [[de Rham cohomology]] in the given degree, regarded as an abelian [[L-∞ algebra]]. \end{itemize} \end{theorem} The following table shows what this sequence reduces to when one chooses $\mathbb{G} = \mathbf{B}^{n-1}U(1)$. [[!include geometric quantization extensions - table]] \hypertarget{examples__and__as_heisenberg_groups}{}\paragraph*{{Examples: $String$ and $Fivebrane$ as Heisenberg $\infty$-groups}}\label{examples__and__as_heisenberg_groups} \begin{example} \label{}\hypertarget{}{} For $G$ a simply connected semisimple compact Lie group such as the [[spin group]], let \begin{displaymath} \nabla \coloneqq \exp\left(2 \pi i \int_{S^1} [S^1, \tfrac{1}{2}\hat \mathbf{p}_1]\right) \;\colon\; G \to \mathbf{B}^2 U(1)_{conn} \end{displaymath} be the canonical [[circle 2-bundle with connection]] over it. Then the [[Heisenberg infinity-group|Heisenberg 2-group]] [[infinity-group extension|extension]] \begin{displaymath} U(1)\mathbf{FlatConn}(G) \to \mathbf{Heis}(\nabla) \to G \end{displaymath} is the [[string 2-group]] extension \begin{displaymath} \mathbf{B}U(1) \to String(G) \to G \,. \end{displaymath} \end{example} (by classification of extensions by cohomology\ldots{} by Lie 2-algebra computation\ldots{}) (and analogously for [[fivebrane 6-group]]\ldots{}) \begin{displaymath} \mathbf{B}^6 U\left(1\right) \to \mathbf{Heis}\left(\exp\left(2 \pi i \int_{S^1} \left[S^1, \tfrac{1}{2}\hat \mathbf{p}_2\right] \right)\right) \to String \end{displaymath} \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} We now turn to the formal definition of higher Atiyah groupoids and the basic constructions on them. Let $\mathbf{H}$ be an [[(∞,1)-topos]]. Let $G \in Grp(\mathbf{H})$ be a [[group object in an (∞,1)-category|group object]] in $\mathbf{H}$, an [[∞-group]]. We define now for every $G$-[[principal ∞-bundle]] $P \to X$ in $\mathbf{H}$ a \emph{[[groupoid object in an (∞,1)-category|groupoid object]]} $At(P) \in Grpd(\mathbf{H})$ in $\mathbf{H}$. In order to do so we invoke two basic facts. \begin{prop} \label{EffectiveEpisAreEquivalentlyGroupoids}\hypertarget{EffectiveEpisAreEquivalentlyGroupoids}{} The construction of forming the [[Cech nerve]] of a [[morphism]] consitutes an [[equivalence of (∞,1)-categories]] from that of [[1-epimorphisms]] to that of [[groupoid objects in an (∞,1)-category|groupoid objects]] in $\mathbf{H}$: \begin{displaymath} (\mathbf{H}^{\Delta^1})_{1epi} \stackrel{\simeq}{\to} Grpd(\mathbf{H}) \,. \end{displaymath} \end{prop} This is a refined version of one of the [[Giraud-Rezk-Lurie axioms]] characterizing [[(∞,1)-topos]], discussed at \emph{[[groupoid object in an (∞,1)-category]]}. \begin{remark} \label{}\hypertarget{}{} In terms of traditional terminology in the literature on [[topological stacks]]/[[differentiable stacks]] etc, this says that a groupoid object in $\mathbf{H}$ is equivalently an object $X \in \mathbf{H}$ which is equipped with an [[atlas]] $X_0 \to X$. \end{remark} Write $\mathbf{B}G \in \mathbf{H}$ for the [[delooping]] of $G$ in $\mathbf{H}$ (the [[moduli ∞-stack]] of $G$-[[principal ∞-bundles]], as the following proposition asserts: \begin{prop} \label{ClassificationOfGPrincipalBundles}\hypertarget{ClassificationOfGPrincipalBundles}{} The operation of forming [[(∞,1)-fibers]] ([[homotopy fibers]]) constitutes an [[equivalence of ∞-groupoids]] \begin{displaymath} fib \;\colon\; \mathbf{H}(X, \mathbf{B}G) \to G Bund(X) \,. \end{displaymath} \end{prop} This is discussed at \emph{[[principal ∞-bundle]]}. Using these two facts we now set: \begin{defn} \label{HigherAtiyahGroupoid}\hypertarget{HigherAtiyahGroupoid}{} For $P \to X$ a $G$-[[principal ∞-bundle]] in $\mathbf{H}$, its \textbf{Atiyah groupoid} is the [[groupoid object in an (∞,1)-category|groupoid object]] $At \in \mathrm{Grpd}(\mathbf{H}) \simeq (\mathbf{H}^{\Delta^1})_{1epi}$ which is the [[1-image]] projection of the classifying map $g \colon X \to \mathbf{B}G$: \begin{displaymath} g \;\colon\; X \stackrel{}{\to} At(P) \coloneqq im_1(g) \hookrightarrow \mathbf{B}G \,. \end{displaymath} \end{defn} \begin{remark} \label{AtiyahGroupoidIsCechNerve}\hypertarget{AtiyahGroupoidIsCechNerve}{} By the discussion at \emph{[[1-image]]}, the 1-image projection of any morphism $f \colon X \to Y$ in an [[(∞,1)-topos]] is equivalently given as the canonical map given by the [[(∞,1)-colimit]] over the [[Cech nerve]] \begin{displaymath} X \to im_1(f) \simeq \underset{\rightarrow}{\lim} (X^{\times^{\bullet+1}_Y}) \,. \end{displaymath} This means that regarded as an object of $Grpd(\mathbf{H})$, the Atiyah groupoid $At(P)$ \emph{is} simply the [[Cech nerve]] of the classifying map. This means that the definition of Atiyah groupoids in [[higher geometry]] is much more fundamental than in traditional [[geometry]]. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{equivalence_of_atiyahgroupoid_bisections_to_slice_automorphisms}{}\subsubsection*{{Equivalence of Atiyah-groupoid bisections to slice automorphisms}}\label{equivalence_of_atiyahgroupoid_bisections_to_slice_automorphisms} We discuss how the [[∞-group of bisections]] of a higher Atiyah groupoid is canonically equivalent to the $\mathbf{H}$-valued [[automorphism ∞-group]] of the modulating map that gave rise to it, regarded as an object in the [[slice (∞,1)-topos]] over its [[codomain]]. To this end we need the following two definitions \begin{defn} \label{HValuedAutomorphismGroup}\hypertarget{HValuedAutomorphismGroup}{} For $f \colon X \to Y$ a [[morphism]] in an [[(∞,1)-topos]] $\mathbf{H}$, its \textbf{$\mathbf{H}$-valued [[automorphism ∞-group]]} $\mathbf{Aut}_{\mathbf{H}}(f)$ is the [[dependent product]] over $Y$ over the [[automorphism ∞-group]] of $f$ regarded as an object in the [[slice (∞,1)-topos]] $\mathbf{H}_{/Y}$: \begin{displaymath} \mathbf{Aut}_{\mathbf{H}}(f) \coloneqq \underset{Y}{\prod} \mathbf{Aut}_{/Y}(f) \,. \end{displaymath} \end{defn} \begin{remark} \label{Concretification}\hypertarget{Concretification}{} For [[concrete object|non-concrete]] codomains $Y$ one is usually interested in the [[concretification]] of this group. To be discussed\ldots{} For an example see at \emph{\hyperlink{TheQuantomorphismNGroups}{The quantomorphism $n$-group}} below. \end{remark} \begin{prop} \label{HValuedAutomorphismAsFiber}\hypertarget{HValuedAutomorphismAsFiber}{} For $f \colon X \to Y$ a morphism in $\mathbf{H}$, its $\mathbf{H}$-valued slice automorphism $\infty$-group according to prop. \ref{HValuedAutomorphismGroup} sits in an [[(∞,1)-pullback]] [[diagram]] \begin{displaymath} \itexarray{ \mathbf{Aut}_{\mathbf{H}}(f) &\to& \mathbf{Aut}(X) \\ \downarrow^{\mathrlap{}} && \downarrow^{\mathrlap{f \circ (-)}} \\ {*} &\stackrel{\vdash f}{\to}& [X,Y] } \,, \end{displaymath} where $\mathbf{Aut}(X) \hookrightarrow [X,X]$ is the ordinary [[automorphism ∞-group]] of $X$ in $\mathbf{H}$. \end{prop} \begin{defn} \label{}\hypertarget{}{} For $\mathcal{G} \in Grpd(\mathbf{H})$ a [[groupoid object in an (∞,1)-category|groupoid object]] in an [[(∞,1)-topos]] $\mathbf{H}$, its \textbf{[[∞-group of bisections]]} $\mathbf{BiSect}(\mathcal{G}) \in Grpd(\mathbf{H})$ is the $\mathbf{H}$-valued automorphism $\infty$-group, def. \ref{HValuedAutomorphismGroup}, of the [[atlas]] $\phi_{\mathcal{G}} \colon \mathcal{G}_0 \to \mathcal{G}$ of $\mathcal{G}$ under prop. \ref{EffectiveEpisAreEquivalentlyGroupoids}: \begin{displaymath} \mathbf{BiSect}(\mathcal{G}) \coloneqq \mathbf{Aut}_{\mathbf{H}}(\phi_{\mathcal{G}}) \,. \end{displaymath} \end{defn} With this the following proposition is immediate, but important for the interpretation of higher Atiyah groupoids: \begin{prop} \label{}\hypertarget{}{} For $c \;\colon\; X \to \mathbf{F}$ a [[morphism]] in an [[(∞,1)-topos]] $\mathbf{H}$, modulating an [[fiber ∞-bundle]] $P \to X$, there is an canonical [[equivalence in an (infinity,1)-category|equivalence]] of [[∞-groups]] \begin{displaymath} \mathbf{BiSect}(At(P)) \simeq \mathbf{Aut}_{\mathbf{H}}(c) \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} We may read this as saying that the higher Atiyah groupoid of an [[fiber ∞-bundle]] is the [[universal property|universal]] solution to the problem of finding a [[groupoid object in an (∞,1)-category|groupoid object]] whose [[∞-group of bisections]] reproduces a given slice [[automorphism ∞-group]]. In many applications, this is indeed the crucial property that drives the interest in higher Atiyah groupoids, see the \emph{\hyperlink{Examples}{Examples}} below. \end{remark} \hypertarget{SequencesOfInclusionsOfGroupsOfBisections}{}\subsubsection*{{Sequences of inclusions of Atiyah-bisection $\infty$-groups}}\label{SequencesOfInclusionsOfGroupsOfBisections} Let $\mathbf{H}$ be an [[(∞,1)-topos]] which is [[cohesive (∞,1)-topos|cohesive]]. As discussed there, this implies that there is an internal notion of [[differential cohomology]] and in particular of [[principal ∞-connections]] in $\mathbf{H}$. We note here how the canonical forgetful maps between [[moduli ∞-stacks]] of [[principal ∞-bundles]] equipped with differing degree of differential refinement induce canonical inclusions of the corresponding higher Atiyah groupoids. Let $\mathbb{G} \in Grp(\mathbf{H}) be a$[[braided ∞-group]]. Then there exists, by [[cohesion]], a canonical notion of $\mathbb{G}$-[[principal ∞-connections]], whose [[moduli ∞-stack]] we denote $\mathbf{B}\mathbb{G}_{\mathrm{conn}}$. This is equipped with a canonical map \begin{displaymath} \mathbf{B}\mathbb{G}_{conn} \to \mathbf{B}\mathbb{G} \end{displaymath} which ``forgets the connection''. Then for $\nabla \colon X \to \mathbf{B}\mathbb{G}_{conn}$ a $\mathbb{G}$-[[principal ∞-connection]] we write \begin{displaymath} \nabla_0 \;\colon\; X \stackrel{\nabla}{\to} \mathbf{B}\mathbb{G}_{conn} \to \mathbf{B}\mathbb{G} \end{displaymath} for the corresponding underlying map. \begin{prop} \label{InclusionOfNableBisectionsIntoNable0Bisections}\hypertarget{InclusionOfNableBisectionsIntoNable0Bisections}{} The [[dependent sum]] along this map induces a canonical map of [[∞-groups]] \begin{displaymath} \mathbf{BiSect}(At(\nabla)) \to \mathbf{BiSetc}(At(\nabla_0)) \,. \end{displaymath} \end{prop} If we regard $\nabla$ as a [[prequantum n-bundle]] then this is a canonical inclusion of the [[quantomorphism n-group]] into the $\infty$-group of ``$\nabla_0$-twisted diffeomorphisms''. If $\mathbb{G}$ is even a [[sylleptic ∞-group]], then the above moduli $\infty$-stacks have a further [[delooping]] and we obtain a 2-step sequence of forgetful maps \begin{displaymath} \mathbf{B}^2 \mathbb{G}_{conn} \to \mathbf{B}(\mathbf{B}\mathbb{G}_{conn}) \to \mathbf{B}^2 \mathbb{G} \,. \end{displaymath} Accordingly: \begin{prop} \label{InclusionOfNableBisectionsIntoNable1AndNabla0Bisections}\hypertarget{InclusionOfNableBisectionsIntoNable1AndNabla0Bisections}{} The [[dependent sum]] along these maps induces inclusions of $\infty$-groups \begin{displaymath} \mathbf{BiSect}(At(\nabla)) \to \mathbf{BiSect}(At(\nabla_1)) \to \mathbf{BiSect}(At(\nabla_0)) \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} This now interprets as the inclusion \begin{enumerate}% \item of the [[quantomorphism n-group]] into the $\infty$-group of bisections of the [[higher Courant groupoid]]; \item $\infty$-group of bisections of the [[higher Courant groupoid]] into that of ``$\nabla_0$-twisted diffeomorphisms''. \end{enumerate} \end{remark} In summary we have the following table of inclusions [[!include slice automorphism groups in higher prequantum geometry - table]] See below at \emph{\hyperlink{TheTraditionalCourantLie2Algebroid}{Examples-- The traditional Courant Lie 2-algebroid}} for more on this. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} We first show how the general notion of \emph{higher Atiyah groupoid} reproduces various traditonal structures. \begin{itemize}% \item \emph{\hyperlink{TheTraditionalAtiyagLieGroupoid}{The traditonal Atiyah Lie groupoid}} \item \emph{\hyperlink{TheTraditionalCourantLie2Algebroid}{The traditional Courant Lie 2-algebroid}} \item \emph{\hyperlink{TheTraditionalQuantomorphismGroup}{The traditional quantomorphism group}} \item \emph{\hyperlink{TheQuantomorphismNGroups}{The quantomorphism n-groups}} \item \emph{\hyperlink{TheTraditionalHeisenbergGroup}{The traditional Heisenberg group}} \item \emph{\hyperlink{TheHeisenbergnGroup}{The Heisenberg n-group}} \end{itemize} \hypertarget{TheTraditionalAtiyagLieGroupoid}{}\subsubsection*{{The traditional Atiyah Lie groupoid}}\label{TheTraditionalAtiyagLieGroupoid} We discuss how the traditional notion of [[Atiyah Lie groupoids]] in traditional [[differential geometry]] is a special case of higher Atiyah groupoids of def. \ref{HigherAtiyahGroupoid}. To set this up we take the ambient [[(∞,1)-topos]] to be $\mathbf{H} \coloneqq$ [[Smooth∞Grpd]] and make use of the canonical embeddings [[SmthMfd]] $\hookrightarrow$ [[diffeological space|DiffeologicalSpace]] $\hookrightarrow$ [[smooth spaces|SmoothSpace]] $\hookrightarrow$ [[Smooth∞Grpd]], and [[Lie groupoid|LieGrpd]] $\simeq$ [[differentiable stack]] $\hookrightarrow$ [[Smooth∞Grpd]] which are understood in the following. \begin{prop} \label{}\hypertarget{}{} For $G$ a [[Lie group]], $X$ a [[smooth manifold]] and $P \to X$ a $G$-[[principal bundle]], the traditional [[Atiyah Lie groupoid]] of $P$ is equivalent to that of def. \ref{HigherAtiyahGroupoid}. \end{prop} \begin{proof} Write $g \colon X \to \mathbf{B}G$ for the classifying map of $P \to X$, by prop. \ref{ClassificationOfGPrincipalBundles}. By remark \ref{AtiyahGroupoidIsCechNerve} the higher Atiyah groupoid $At(P)$ is simply the [[Cech nerve]] of this map. Since $G$ and $X$ and hence $P$ are all [[truncated object in an (infinity,1)-category|0-truncated objects]], hence $\mathbf{B}G$ a [[1-truncated]] object, this Cech nerve is [[coskeleton|2-coskeletal]] and hence is sufficient to consider the first three degrees. By definition these are \begin{displaymath} At(P) \simeq \left( X \underset{\mathbf{B}G}{\times}X \underset{\mathbf{B}G}{\times}X \stackrel{\to}{\stackrel{\to}{\to}} X \underset{\mathbf{B}G}{\times}X \stackrel{\to}{\to} X \right) \,, \end{displaymath} where $X \underset{\mathbf{B}G}{\times}X$ denotes the [[homotopy fiber product]] of $g$ with itself, and so forth. To see what this object is, pick any $U \in$ [[CartSp]], and observe that \begin{displaymath} \mathbf{H}(U, X\underset{\mathbf{B}G}{\times}X ) \simeq \mathbf{H}(U,X) \underset{\mathbf{H}(U,\mathbf{B}G)}{\times} \mathbf{H}(U,X) \end{displaymath} (using that the [[(∞,1)-categorical hom]]-[[(∞,1)-functor]] $\mathbf{H}(U,-)$ preserves [[(∞,1)-limits]]) is equivalently the [[set]] of [[triples]] consisting of two [[smooth functions]] $\phi_1, \phi_2 \colon X$ and a [[gauge transformation]] between the [[pullback|pulled-back bundles]] $\eta \colon \phi_1^* P \to \phi_2^* P$ on $U$. Since $U$ is topologically [[contractible topological space|contractible]], and hence every $G$-[[principal bundle]] over $U$ admits a [[section]], every such triple induces a [[function]], in fact a [[bijection]], from the set of lifts $\hat \phi_1 \colon U \to P$ of $\phi_1$ to the set of lifts $\hat \phi_2 \colon U \to P$ which are $C^\infty(U,G)$-equivariant. By $G$-equivariant every pair consisting of a single lift $\hat \phi_1$ and its image $\eta(\hat \phi_1)$ already uniquely determes $\eta$. Therefore the above set of triples is [[natural isomorphism|naturally isomorphic]] to the set of [[smooth functions]] $U \to P \times_G P \coloneqq (P \times P)/_{diag} G$. This is precisely the [[smooth manifold]] of [[morphisms]] of the traditional [[Atiyah Lie groupoid]]. Since this is true for all $U \in$ [[CartSp]] and [[natural transformation|naturally]] so, and since [[CartSp]] is a [[site]] of definition of [[Smooth∞Grpd]] it follows by the [[(∞,1)-Yoneda lemma]] (which in the present cases reduces to the ordinary [[Yoneda lemma]]), we have a [[natural equivalence]] \begin{displaymath} X \underset{\mathbf{B}G}{\times} X \simeq P \times_G P \,. \end{displaymath} In this manner it is immediate to check that this identification respects all the structure maps, and hence the above Cech nerve is indeed identified as the [[simplicial manifold]] which is the [[nerve]] of the traditional [[Atiyah Lie groupoid]] $(P \times_G P \stackrel{\to}{\to} X)$. \end{proof} \hypertarget{TheTraditionalCourantLie2Algebroid}{}\subsubsection*{{The traditional Courant Lie 2-algebroid}}\label{TheTraditionalCourantLie2Algebroid} There is a traditional construction which assigns to a [[bundle gerbe]] ``with connective structure but without [[curving]]'' a [[Courant Lie 2-algebroid]]. We discuss here how this is the [[Lie differentiation]] of the corresponding higher Atiyah groupoid. In order to do so, we pick again, as \hyperlink{TheTraditionalAtiyagLieGroupoid}{above}, as ambient context $\mathbf{H} =$ [[Smooth∞Grpd]]. \begin{prop} \label{}\hypertarget{}{} For $\mathbb{G} \coloneqq U(1) \in LieGrp \hookrightarrow Grp(\mathbf{H})$ the [[circle Lie group]] (which is in particular a [[sylleptic ∞-group]]), the sequence of maps of [[moduli ∞-stacks]] \begin{displaymath} \mathbf{B}^2 U(1)_{conn} \to \mathbf{B}(\mathbf{B}U(1)_{conn}) \to \mathbf{B}^2 U(1) \end{displaymath} of prop. \ref{InclusionOfNableBisectionsIntoNable1AndNabla0Bisections} is presented under the canonical equivalence [[Smooth∞Grpd]] $\simeq _{L_{lwhe}} Func(CartSp^{op}_{smooth}, sSet)$ by the image under the [[Dold-Kan correspondence]] of the evident sequence of [[chain maps]] \begin{displaymath} \itexarray{ U(1) &\stackrel{id}{\to}& U(1) &\stackrel{id}{\to}& U(1) \\ \downarrow^{\mathrlap{d log}} && \downarrow^{\mathrlap{d log}} && \downarrow^{\mathrlap{0}} \\ \Omega^1 &\stackrel{id}{\to}& \Omega^1 &\stackrel{\mathrlap{0}}{\to}& 0 \\ \downarrow^{\mathrlap{d}} && \downarrow^{\mathrlap{0}} && \downarrow^{\mathrlap{0}} \\ \Omega^2 &\to& 0 &\to& 0 } \,, \end{displaymath} where on the left we have the [[Deligne complex]] for degree-3-[[ordinary differential cohomology]]. \end{prop} \begin{proof} This is a direct consequence of the discussion at \emph{[[circle n-bundle with connection]]}. \end{proof} \begin{remark} \label{}\hypertarget{}{} This makes precise how \begin{itemize}% \item $\mathbf{B}^2 U(1)_{conn}$ is the [[moduli infinity-stack|moduli 2-stack]] of [[circle 2-bundles with connection]]; \item $\mathbf{B}(\mathbf{B}U(1)_{conn})$ is the moduli 2-stack of circle 2-bundle ``with connection but without [[curving]]''; \item $\mathbf{B}^2 U(1)$ is the moduli 2-stack of [[circle 2-group]]-[[principal 2-bundles]]. \end{itemize} \end{remark} Let \begin{displaymath} \nabla_1 \colon X \to \mathbf{B}(\mathbf{B}U(1)_{conn}) \end{displaymath} be the map modulating [[circle 2-bundle with connection]] but ``without [[curving]]''. Then then higher Atiyah groupoid of th $(\mathbf{B}U(1)_{conn})$-[[principal 2-bundle]] classified by this map has as higher Atiyah groupoid the corresponding \emph{[[Courant Lie 2-groupoid]]}: the object which is the [[Lie integration]] of the traditional [[Courant Lie 2-algebroid]] associated with $\nabla_1$. To see we observe that the corresponding [[∞-group of bisections|2-group of bisections]] is \begin{displaymath} \mathbf{Aut}_{\mathbf{H}}(\nabla_1) \coloneqq \underset{\mathbf{B}(\mathbf{B}U(1)_{conn})}{\prod} \mathbf{Aut}_{/\mathbf{B}(\mathbf{B}U(1)_{conn})}(\nabla_1) \,. \end{displaymath} This has as objects [[diagrams]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ X &&\underoverset{\simeq}{\phi}{\to}&& X \\ & {}_{\mathllap{\nabla_1}}\searrow &\swArrow_\eta& \swarrow_{\mathrlap{\nabla_1}} \\ && \mathbf{B}(\mathbf{B}U(1)_{conn}) } \,, \end{displaymath} hece equivalently pairs consisting of a [[diffeomorphism]] $\phi \colon X \to X$ and a [[gauge transformation]] (of 2-connections without [[curving]]) \begin{displaymath} \eta \;\colon \; \phi^* \nabla_1 \to \nabla_1 \,. \end{displaymath} The morphisms are accordingly the suitable [[natural transformations]] of these diagrams. This is precisely the 2-group of ``bundle gerbe symmetries'' of $\nabla_1$ which is studient in (\hyperlink{Collier}{Collier}). With this identification the main result there is the above claim. Moreover, the canonical inclusions of smooth 2-groups of prop. \ref{InclusionOfNableBisectionsIntoNable1AndNabla0Bisections} reproduces, under [[Lie differentiation]], the inclusion of the [[Poisson Lie 2-algebra]] into that [[Lie 2-algebra]] of sections of the corresponding [[Courant Lie 2-algebroid]] observed in (\hyperlink{Rogers10}{Rogers 10}). \hypertarget{TheTraditionalQuantomorphismGroup}{}\subsubsection*{{The traditional quantomorphism group}}\label{TheTraditionalQuantomorphismGroup} For $\nabla \colon X \to \mathbf{B}U(1)_{conn}$ the [[group of bisections]] of the corresponding Atiyah groupoid is the [[quantomorphism group]] of $\nabla$ regarded as a [[prequantum bundle]]. (\ldots{}) \hypertarget{TheQuantomorphismNGroups}{}\subsubsection*{{The quantomorphism $n$-groups}}\label{TheQuantomorphismNGroups} In (\hyperlink{Rogers}{Rogers 11}) is a proposal for the generalization of the notion of [[Poisson bracket]] [[Lie algebra]] of a [[symplectic manifold]] to a notion of [[Poisson Lie n-algebra]] induced by an \emph{[[n-plectic manifold]]}. Since the [[Lie integration]] of the [[Poisson bracket]] is traditionally known as the \emph{[[quantomorphism group]]}, the Lie integration of these [[Poisson Lie n-algebras]] should be called an \emph{[[quantomorphism n-group]]}. We here discuss a general abstract theory of [[quantomorphism n-groups]] as [[∞-groups of bisections]] of a higher Atiyah groupoid associated with a [[principal ∞-connections]]. Then we show that under [[Lie differentiation]] this reproduces the construction in (\hyperlink{Rogers11}{Rogers 11}). [[!include geometric quantization extensions - table]] For all of the following, let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] equipped with [[differential cohesion]]. Let $\mathbb{G} \on Grpd(\mathbf{H})$ be equipped with the structure of a [[braided ∞-group]]. Then there is a canonical object $\mathbf{B}\mathbb{G}_{conn} \in \mathbf{H}$ which is the [[moduli ∞-stack]] of $\mathbb{G}$-[[principal ∞-connections]]. Fox such a [[principal ∞-connection]] given by a map \begin{displaymath} \nabla \;\colon\; X \to \mathbf{B}\mathbb{G}_{conn} \,. \end{displaymath} \begin{remark} \label{}\hypertarget{}{} By prop. \ref{HValuedAutomorphismAsFiber} the $\mathbf{H}$-valued automorphism $\infty$-group $\mathbf{Aut}_{\mathbf{H}}(\nabla)$ according to def. \ref{HValuedAutomorphismGroup} sits in an [[(∞,1)-pullback]] diagram of the form \begin{displaymath} \itexarray{ \mathbf{Aut}_{\mathbf{H}}(\nabla) &\to& \mathbf{Aut}(X) \\ \downarrow && \downarrow^{\mathrlap{\nabla \circ (-)}} \\ {*} &\stackrel{\vdash \nabla}{\to}& [X, \mathbf{B}\mathbb{G}_{conn}] } \,. \end{displaymath} By remark \ref{Concretification} we want to pass to its [[concretification]]. Indeed, in the above diagram the [[mapping ∞-stack]] $[X, \mathbf{B}\mathbb{G}_{conn}]$ is not quite yet the correct [[moduli ∞-stack]] for $\mathbb{G}$-[[principal ∞-connections]] on $X$, but instead its [[differential concretification]] $\mathbb{G}\mathbf{Conn}(X)$ is, as defined at \emph{\href{concretification#ConcretificationOfDifferentialModuli}{concretification - Examples - Of differential moduli}}. Therefore the following definition states the above pullback diagram with that replacement. \end{remark} \begin{defn} \label{}\hypertarget{}{} Let $\mathbb{G}$ be a [[braided ∞-group]] as above and let $\nabla \;\colon\; X \to \mathbf{B}\mathbb{G}_{conn}$ be a $\mathbb{G}$-[[principal ∞-connection]]. The \textbf{[[quantomorphism ∞-group]]} $QuantMorph(\nabla) \in \mathrm{Grp}(\mathbf{H})$ of a $\nabla$ is the object fitting into the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{QuantMorph}(\nabla) &\to& \mathbf{Aut}(X) \\ \downarrow && \downarrow^{\mathrlap{\nabla \circ (-)}} \\ {*} &\stackrel{\vdash \nabla}{\to}& \mathbb{G}\mathbf{Conn}(X) } \,. \end{displaymath} \end{defn} \begin{defn} \label{HamiltonianSymplectomorphismInfinityGroup}\hypertarget{HamiltonianSymplectomorphismInfinityGroup}{} The [[Hamiltonian symplectomorphism ∞-group]] $\mathbf{HamSympl}(\nabla)$ is the [[1-image]] of the canonical map $\mathbf{QuantMorph}(\nabla) \to \mathbf{Aut}(X)$. \end{defn} \begin{prop} \label{QuantomorphismExtension}\hypertarget{QuantomorphismExtension}{} The [[quantomorphism ∞-group]] $\mathbf{QuantMorph}(\nabla)$ in an [[∞-group extension]] of the Hamiltonian symplectomorphism $\infty$-group of def. \ref{HamiltonianSymplectomorphismInfinityGroup} by the [[∞-group]] $(\Omega\mathbb{G})\mathbf{FlatConn}(X)$ of [[concretification|concretified]] [[flat ∞-connections]] on $X$: we have a [[homotopy fiber sequence]] \begin{displaymath} (\Omega\mathbb{G})\mathbf{FlatConn}(X) \to \mathbf{QuantMorph}(\nabla) \to \mathbf{HamSympl}(\nabla) \,. \end{displaymath} Moreover, at least at the level of the underlying objects, this extension is classified by the [[cocycle]] $\mathbf{HamSympl}(\nabla) \stackrel{\nabla \circ (-)}{\to} \mathbf{B}((\Omega\mathbb{G})\mathbf{FlatConn}(X))$ in that we have a long [[homotopy fiber sequence]] \begin{displaymath} (\Omega\mathbb{G})\mathbf{FlatConn}(X) \to \mathbf{QuantMorph}(\nabla) \to \mathbf{HamSympl}(\nabla) \stackrel{\nabla \circ (-)}{\to} \mathbf{B}((\Omega \mathbb{G})\mathbf{FlatConn}(X)) \,. \end{displaymath} \end{prop} We now restrict this to a special case and describe it more in detail: Let $\mathbf{H} =$ [[Smooth∞Grpd]], let $X \in$ [[SmthMfd]] $\hookrightarrow$ [[Smooth∞Grpd]] and let $\mathbb{G} \coloneqq \mathbf{B}^{n-1}U(1) \in \mathrm{Grp}(\mathbf{H})$ be the [[circle n-group]]. Finally let $\omega \colon X \to \Omega^{n+1}$ be an [[n-plectic form]] and $\nabla \;\colon\; X \to \mathbf{B}^n U(1)_{conn}$ a prequantization by a [[prequantum circle n-bundle]]. \begin{prop} \label{}\hypertarget{}{} The [[Lie differentiation]] of the [[∞-group extension]] sequence of prop. \ref{QuantomorphismExtension} is a [[homotopy fiber sequence]] of [[L-∞ algebras]] \begin{displaymath} \mathbf{H}(X, \flat \mathbf{B}^{n-1}\mathbb{R}) \to \mathfrak{Poisson}(X,\omega) \to \mathcal{X}_{Ham}(X,\omega) \stackrel{\iota_{(-)\omega}}{\to} \mathbf{B}\mathbf{H}(X, \flat \mathbf{B}^{n-1}\mathbb{R}) \,, \end{displaymath} where \begin{itemize}% \item $\mathfrak{Poisson}(X,\omega)$ is the [[Poisson Lie n-algebra]] as defined in (\hyperlink{Rogers11}{Rogers 11}). \item $\mathcal{X}_{Ham}$ is the Lie algebra of [[vector fields]] restricted to the [[Hamiltonian vector fields]]; \item $\mathbf{H}(X, \flat (\mathbf{B}^{n-1})\mathbb{R})$ is the [[chain complex]] for flat [[de Rham cohomology]] in the given degree, regarded as an abelian [[L-∞ algebra]]. \end{itemize} \end{prop} \hypertarget{TheTraditionalHeisenbergGroup}{}\subsubsection*{{The traditional Heisenberg group}}\label{TheTraditionalHeisenbergGroup} (\ldots{}) [[Heisenberg group]] (\ldots{}) \hypertarget{TheHeisenbergnGroup}{}\subsubsection*{{The Heisenberg $n$-group}}\label{TheHeisenbergnGroup} If $X = G \in \mathbf{H}$ has itself [[∞-group]] structure, then it is natural to restrict the [[quantomorphism ∞-group]] to that subgroup of the [[Hamiltonian symplectomorphism ∞-group]] whose elements come from the $G$-[[∞-action]] on itself. This is the corresponding \emph{[[Heisenberg ∞-group]]}. \begin{defn} \label{}\hypertarget{}{} With all assumtions as \hyperlink{TheQuantomorphismNGroups}{above}, let $G \in Grp(\mathbf{H})$ be an [[∞-group]] and let \begin{displaymath} G \hookrightarrow \mathbf{Aut}(G) \end{displaymath} (where on the right we have the [[automorphism ∞-group]] of the underlying object $G \in \mathbf{H}$) the inclusion that exhibits the left $G$-[[∞-action]] on itself. The the \textbf{[[Heisenberg ∞-group]]} $\mathbf{Heis}(\nabla)$ is the [[(∞,1)-pullback]] in the [[diagram]] \begin{displaymath} \itexarray{ \mathbf{Heis}(\nabla) &\to& \mathbf{QuantMorph}(\nabla) \\ \downarrow && \downarrow \\ G &\to& \mathbf{Aut}(G) } \,. \end{displaymath} \end{defn} The following is an immediate consequence of the definition \begin{prop} \label{HeisenbergInfinityGroupExtension}\hypertarget{HeisenbergInfinityGroupExtension}{} The [[Heisenberg ∞-group]] $\mathbf{Heis}(\nabla)$ is an [[∞-group extension]] of $G$ by $(\Omega \mathbb{G})\mathbf{FlatConn}(G)$: we have a [[homotopy fiber sequence]] of [[∞-groups]] \begin{displaymath} (\Omega \mathbb{G})\mathbf{FlatConn}(G) \to \mathbf{QuantMorph}(\nabla) \to G \,. \end{displaymath} \end{prop} \begin{example} \label{}\hypertarget{}{} In $\mathbf{H} =$ [[Smooth∞Grpd]] consider $G \in LieGrp \hookrightarrow Grp(\mathbf{H})$ a [[connected topological space|connected]], [[simply connected topological space|simply connected]] [[compact Lie group|compact]] [[semisimple Lie group]], say the [[Spin group]] $G = Spin$. Then the [[Killing form]] [[invariant polynomial]] is a pre-3-plectic form on the [[moduli stack]] of $G$-[[principal connections]]: \begin{displaymath} \langle -,-\rangle \;\colon\; \mathbf{B}G_{conn} \to \mathbf{\Omega}_{cl}^4 \,. \end{displaymath} This has a [[higher geometric prequantization]] by the [[smooth first fractional Pontryagin class]], a map \begin{displaymath} \tfrac{1}{2}\hat\mathbf{p}_1 \;\colon\; \mathbf{B}G_{conn} \to \mathbf{B}^3 U(1)_{conn} \,. \end{displaymath} The [[transgression]] of this to maps oout of the [[circle]] yields a [[circle 2-bundle with connection]] \begin{displaymath} \nabla \;\colon\; G \to [S^1, G] \stackrel{[S^1, \frac{1}{2}\hat\mathbf{p}_1]}{\to} [S^1, \mathbf{B}^3 U(1)_{conn}] \stackrel{\exp(2 \pi i \int_{S^1}(-))}{\to} \mathbf{B}^2 U(1) \,. \end{displaymath} This is a [[prequantum circle 2-bundle]] which prequantizes the canonical [[differential 3-form]] on $G$, the one which is [[invariant differential form|left invariant]] and at the neutral element is $\langle -,[-,-]\rangle$. Consider now the [[higher prequantum geometry]] of this 2-connection. So now $\mathbb{G} = \mathbf{B}U(1)$. Observe that \begin{displaymath} \begin{aligned} (\Omega \mathbb{G})\mathbf{FlatConn}(G) & \simeq U(1) \mathbf{FlatConn}(G) \\ & = \mathbf{B}U(1) \end{aligned} \end{displaymath} because $G$ is assumed to be [[simply connected topological space|simply connected]]. (Notice that $\mathbf{B}U(1)$ does appear here with its canonical smooth structure: while a [[gauge transformation]] from the trivial $U(1)$-[[principal connection]] to itself is a constant function along $X$, the smooth structure in $U(1)\mathbf{FlatConn}(G)$ comes from how this may vary in parameterized collections ). Therefore by prop. \ref{HeisenbergInfinityGroupExtension} we have an [[∞-group extension]] \begin{displaymath} \mathbf{B}U(1) \to \mathbf{Heis}(\nabla) \to G \,. \end{displaymath} This exhibits the Heisenberg 2-group here as the [[string 2-group]] $String(G)$: \begin{displaymath} \mathbf{Heis}(\nabla) \simeq String(G) \,. \end{displaymath} \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include higher Atiyah groupoid - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The \hyperlink{TheTraditionalCourantLie2Algebroid}{above} identification of higher Atiyah groupoids of ``bundle gerbes with connective structure but without [[curving]]'' with those [[Lie integration|Lie integrating]] the corresponding [[standard Courant Lie 2-algebroid]] is directly implied (under the above translations) by the main result in \begin{itemize}% \item [[Braxton Collier]], \emph{Infinitesimal Symmetries of Dixmier-Douady Gerbes} (\href{http://arxiv.org/abs/1108.1525}{arXiv:1108.1525}) \end{itemize} The corresponding inclusion of the [[Poisson Lie 2-algebra]] into the [[Lie 2-algebra]] of bisections of the [[Courant Lie 2-algebroid]] was first observed in \begin{itemize}% \item [[Chris Rogers]], \emph{2-plectic geometry, Courant algebroids, and categorified prequantization} , \href{http://arxiv.org/abs/1009.2975}{arXiv:1009.2975}. \end{itemize} in the context of \emph{[[2-plectic geometry]]} over [[smooth manifolds]]. The [[Poisson Lie n-algebra]] over an [[n-plectic manifold]], which by prop. \ref{spring} is the [[Lie differentiation]] of the [[quantomorphism n-group]] of any [[prequantum circle n-bundle]] prequantizing the $n$-plectic form, has been proposed in \begin{itemize}% \item [[Chris Rogers]], \emph{Higher symplectic geometry} PhD thesis (2011) (\href{http://arxiv.org/abs/1106.4068}{arXiv:1106.4068}) \end{itemize} Most further statements here will appear in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantum theory]]} \end{itemize} [[!redirects higher Atiyah groupoids]] [[!redirects higher gauge groupoid]] [[!redirects higher gauge groupoids]] \end{document}