\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher Klein geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{higher_super_poincar_klein_geometry}{Higher super Poincar\'e{} Klein geometry}\dotfill \pageref*{higher_super_poincar_klein_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Higher Klein geometry} is the generalization of [[Klein geometry]] from traditional ([[differential geometry|differential]]) [[geometry]] to [[higher geometry]]: where Klein geometry is about ([[Lie group|Lie]]) [[groups]] and their [[quotient]]s, higher Klein geometry is about ([[smooth infinity-group|smooth]]) [[∞-groups]] and their [[groupoid object in an (∞,1)-category|∞-quotients]]. The way that the generalization proceeds is clear after the following observation. \begin{prop} \label{}\hypertarget{}{} Let $G$ be a [[discrete group]] and $H \hookrightarrow G$ a subgroup. Write $\mathbf{B}G$ and $\mathbf{B}H$ for the corresponding [[delooping]] [[groupoid]]s with a single object. Then the [[action groupoid]] $G//H$ is the [[homotopy fiber]] of the inclusion [[functor]] \begin{displaymath} \mathbf{B}H \to \mathbf{B}G \end{displaymath} in the [[(2,1)-category]] [[Grpd]]: we have a [[fiber sequence]] \begin{displaymath} G//H \to \mathbf{B}H \to \mathbf{B}G \end{displaymath} that exhibits $G//H$ as the $G$-[[principal bundle]] over $\mathbf{B}H$ which is classified by the [[cocycle]] $\mathbf{B}H \to \mathbf{B}G$. Moreover, the [[decategorification]] of the [[action groupoid]] (its [[0-truncated|0-truncation]]) is the ordinary [[quotient]] \begin{displaymath} \tau_0 (G//H) = G/H \,. \end{displaymath} \end{prop} \begin{proof} This should all be explained in detail at [[action groupoid]]. The fact that a [[quotient]] is given by a [[homotopy fiber]] is a special case of the general theorem discussed at \href{http://ncatlab.org/nlab/show/limit+in+a+quasi-category#WithValInooGrpd}{∞-colimits with values in ∞Grpd} \end{proof} \begin{remark} \label{}\hypertarget{}{} That fiber sequence continues to the left as \begin{displaymath} H \to G \to G//H \to \mathbf{B}H \to \mathbf{B}G \,. \end{displaymath} \end{remark} \begin{prop} \label{}\hypertarget{}{} The above statement remains true \emph{verbatim} if [[discrete group]]s are generalized to [[Lie group]]s -- or other \href{http://ncatlab.org/nlab/show/cohesive+%28infinity%2C1%29-topos+--+structures#InfinGroups}{cohesive groups} -- if only we pass from the [[(2,1)-topos]] [[Grpd]] of [[discrete groupoid]]s to the [[(2,1)-topos]] [[Smooth∞Grpd|SmoothGrpd]] of \emph{smooth groupoids} . \end{prop} This follows with the discussion at [[smooth ∞-groupoid -- structures]]. Since the quotient $G/H$ \emph{is} what is called a \emph{[[Klein geometry]]} and since by the above observations we have analogs of these quotients for \href{http://ncatlab.org/nlab/show/cohesive+%28infinity%2C1%29-topos+--+structures#InfinGroups}{higher cohesive groups}, there is then an evident definition of \emph{higher Klein geometry} : \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathbf{H}$ be a choice of [[cohesive (∞,1)-topos|cohesive structure]]. For instance choose \begin{itemize}% \item $\mathbf{H} =$ [[Disc∞Grpd]] for discrete higher Klein geometry (no actual geometric structure); \item $\mathbf{H} =$ [[ETop∞Grpd]] for continuous higher Klein geometry (with [[topological structure]]); \item $\mathbf{H} =$ [[Smooth∞Grpd]] for higher Klein geometry based on [[differential geometry]]; \item $\mathbf{H} =$ [[SuperSmooth∞Grpd]] for the [[supergeometry]] version of higher Klein geometry \item and so on. \end{itemize} \begin{defn} \label{}\hypertarget{}{} An \textbf{$\infty$-Klein geometry} in $\mathbf{H}$ is a [[fiber sequence]] in $\mathbf{H}$ \begin{displaymath} G//H \to \mathbf{B}H \stackrel{i}{\to} \mathbf{B}G \end{displaymath} for $i$ any morphism between two [[connected]] objects, as indicated, hence $\Omega i : H \to G$ any morphism of [[∞-group]] objects. \end{defn} \begin{remark} \label{}\hypertarget{}{} For $X$ an object equipped with a $G$-[[action]] and $f : Y \to X$ any morphism, the higher Klein geometry induced by ``the shape $Y$ in $X$'' is given by taking $i : H \to G$ be the [[stabilizer ∞-group]] $Stab(f) \to G$ of $f$ in $X$. See there at \emph{\href{stabilizer+group#KleinGeometry}{Examples -- Stabilizers of shapes / Klein geometry}}. \end{remark} \begin{remark} \label{}\hypertarget{}{} \begin{itemize}% \item By the discussion at [[looping and delooping]], and using that a [[cohesive (∞,1)-topos]] has [[homotopy dimension]] 0 it follows that every connected object indeed is the delooping of an [[∞-group]] object. \item The above says that $G//H$ is the [[principal ∞-bundle]] over $\mathbf{B}H$ that is classified by the [[cocycle]] $i$. Continuing this [[fiber sequence]] further to the left yields the long fiber sequence \begin{displaymath} H \to G \to G//H \to \mathbf{B}H \stackrel{i}{\to} \mathbf{B}G \end{displaymath} This exhibits $G$ indeed as the [[fiber]] of $G//H \to \mathbf{B}H$. \end{itemize} \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{higher_super_poincar_klein_geometry}{}\subsubsection*{{Higher super Poincar\'e{} Klein geometry}}\label{higher_super_poincar_klein_geometry} Let $\mathbf{H} =$ [[SuperSmooth∞Grpd]] be the context for [[SynthDiff∞Grpd|synthetic]] [[higher geometry|higher]] [[supergeometry]]. Write $\mathfrak{sugra}_11$ for the [[super L-∞ algebra]] called the [[supergravity Lie 6-algebra]]. This has a sub-super $L_\infty$-algebra of the form \begin{displaymath} \mathbf{B}(\mathfrak{so}(10,1) \oplus b \mathbb{R} \oplus b^{5}\mathbb{R}) \hookrightarrow \mathbf{B}\mathfrak{sugra}_11 \,, \end{displaymath} where \begin{itemize}% \item $\mathfrak{so}(d,1)$ is the [[special orthogonal Lie algebra]]; \item $b^{n-1} \mathbb{R}$ is the [[line Lie n-algebra]]. \end{itemize} The quotient \begin{displaymath} \mathfrak{sugra}_11 / ((\mathfrak{so}(10,1) \oplus b \mathbb{R} \oplus b^{5}\mathbb{R})) \end{displaymath} is the [[super translation Lie algebra]] in 11-dimensions. This higher Klein geometry is the local model for the [[higher Cartan geometry]] that describes [[11-dimensional supergravity]]. See [[D'Auria-Fre formulation of supergravity]] for more on this. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include local and global geometry - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} That there ought to be a systematic study of higher Klein geometry and [[higher Cartan geometry]] has been amplified by [[David Corfield]] since 2006. Such a formalization is offered in \begin{itemize}% \item [[schreiber:differential cohomology in a cohesive topos]] \end{itemize} For more on this see at \emph{[[higher Cartan geometry]]} and \emph{[[schreiber:Higher Cartan Geometry]]}. [[!redirects higher Klein geometries]] \end{document}