\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher Segal space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{internal_categories}{}\paragraph*{{Internal $(\infty,1)$-Categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{warning}{Warning}\dotfill \pageref*{warning} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{higher_associativity_parameterized_by_polyhedra}{Higher associativity parameterized by polyhedra}\dotfill \pageref*{higher_associativity_parameterized_by_polyhedra} \linebreak \noindent\hyperlink{categories_with_multivalued_composition}{Categories with multivalued composition}\dotfill \pageref*{categories_with_multivalued_composition} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{DyckerhoffKapranov}{Dyckerhoff-Kapranov}\dotfill \pageref*{DyckerhoffKapranov} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{warning}{}\subsection*{{Warning}}\label{warning} There are several unrelated generalizations of the concept of a [[Segal space]] which might be thought of as ``higher Segal spaces''. For example, one might discuss \begin{itemize}% \item [[$n$-fold Segal spaces]], a model for $(\infty,n)$-categories. \item [[$n$-uple Segal spaces]], a model for cubical $(\infty,n)$-categories. \item [[$d$-Segal spaces]] in the sense of Dyckerhoff and Kapranov, a model for something like an $(\infty,1)$-category, but without uniqueness of composites (for $d \geq 2$) and with higher associativity only in dimension $d$ and above. \end{itemize} This article discusses $d$-Segal spaces in the sense of Dyckerhoff and Kapranov. \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There are several ways to think about $d$-Segal spaces: \hypertarget{higher_associativity_parameterized_by_polyhedra}{}\subsubsection*{{Higher associativity parameterized by polyhedra}}\label{higher_associativity_parameterized_by_polyhedra} A $1$-Segal space $C$ is a [[Segal space]], i.e. a simplicial space satisfying the [[Segal condition]]. We think of the Segal condition in the following way. For every subdivision of an interval $I$ into subintervals $I_1,\dots,I_n$, and for any choice of labelings of the endpoints of these intervals by objects $c_0,\dots,c_n$, and any choice of labelings $\gamma_1 \in C(c_0,c_1),\dots,\gamma_n \in C(c_{n-1},c_n)$ of the intervals $I_1, \dots, I_n$, the Segal condition provides us with a ``composite'' labeling $\gamma_n \circ \dots \circ \gamma_1$ of the whole interval $I$, in a coherent way. ``Coherence'' here means that the composition is continuous in the $\gamma_i$`s, but moreover that it is associative: if we compose our labelings in two steps, for example, we get the same result as if we compose our labelings in one step: $\gamma_3 \circ (\gamma_2 \circ \gamma_1) = \gamma_3 \circ \gamma_2 \circ \gamma_1$. A $2$-Segal space is, like a $1$-Segal space, a simplicial space, but it satisfies only a weakened version of the Segal condition. Instead of stipulating that labelings of triangualtions of 1-dimensional intervals may be coherently composed, we stipulate that labelings of triangulations of 2-dimensional polygons may be coherently composed. Similarly $d$-Segal spaces are simplicial spaces with higher associativity data parameterized by triangulations of $d$-dimensional polyhedra. \hypertarget{categories_with_multivalued_composition}{}\subsubsection*{{Categories with multivalued composition}}\label{categories_with_multivalued_composition} A 2-Segal space is a ``category with multivalued composition'', or a category enriched in [[Span]]. A composite of two morphisms $a \to b \to c$ need not exist, and if it does it may not be unique. But whatever composites there are satisfy all ``higher associativity conditions'' one could want. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{DyckerhoffKapranov}{}\subsubsection*{{Dyckerhoff-Kapranov}}\label{DyckerhoffKapranov} In (\hyperlink{DyckerhoffKapranov12}{DyckerhoffKapranov 12}) a 2-Segal space is defined to be a simplicial space with a higher analog of the weak composition operation known from [[Segal spaces]]. Let $X$ be a [[simplicial topological space]] or [[bisimplicial set]] or generally a [[simplicial object]] in a suitable [[simplicial model category]]. For $n \in \mathbb{N}$ let $P_n$ be the $n$-[[polygon]]. For any [[triangulation]] $T$ of $P_n$ let $\Delta^T$ be the corresponding [[simplicial set]]. Regarding $\Delta^n$ as the cellular [[boundary]] of that polygon provides a morphism of simplicial sets $\Delta^T \to \Delta^n$. Say that $X$ is a \textbf{2-Segal object} if for all $n$ and all $T$ as above, the induced [[morphisms]] \begin{displaymath} X_n := [\Delta^n, X] \to X_T := [\Delta^T,X] \end{displaymath} are [[weak equivalences]]. \textbf{Warning.} A Dyckerhoff-Kapranov ``2-Segal spaces'' is not itself a model for an [[(∞,2)-category]]. Instead, it is a model for an [[(∞,1)-operad]] (\hyperlink{DyckerhoffKapranov12}{Dyckerhoff-Kapranov 12, section 3.6}). Under some conditions DW 2-Segal spaces $X_\bullet$ induce [[Hall algebra]] structures on $X_1$ (\hyperlink{DyckerhoffKapranov12}{Dyckerhoff-Kapranov 12, section 8}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} A central motivating example comes from $K$-theory. If $C$ is a [[Quillen-exact category]], then $S_\bullet C$ is a 2-Segal space. Here $S_\bullet$ is the [[Waldhausen S-construction]]. There is one object of $S_\bullet C$, denoted $0$. There is a morphism $0 \to 0$ for each object of $C$. A composite of in $S_\bullet C$ of two objects $c,c' \in C$ is an object $c'' \in C$ equipped with a short exact sequence $0 \to c \to c'' \to c' \to 0$. Thus the composite is generally not unique, but it does satisfy all the higher associativity conditions required of a 2-Segal space. \hypertarget{references}{}\subsection*{{References}}\label{references} For more references along these lines see at \emph{[[n-fold complete Segal space]]} The Dyckerhoff-Kapranov ``higher Segal spaces'' \hyperlink{DyckerhoffKapranov}{above} are discussed in \begin{itemize}% \item Tobias Dyckerhoff, [[Mikhail Kapranov]], \emph{Higher Segal spaces I}, (\href{http://arxiv.org/abs/1212.3563}{arxiv:1212.3563}) \end{itemize} \begin{itemize}% \item Tobias Dyckerhoff, \emph{Higher Segal spaces}, talk at Steklov Mathematical Institute (2011) (\href{http://www.mathnet.ru/php/presentation.phtml?presentid=3718&option_lang=eng}{video}) \end{itemize} \begin{itemize}% \item [[Mikhail Kapranov]], \emph{Higher Segal spaces}, talk at IHES (2012) (\href{http://www.dailymotion.com/video/xpm3at_mikhail-kapranov-a-meeting-on-the-occasion-of-the-75th-birthday-of-yuri-ivanovich-manin_tech}{video}) \end{itemize} [[!redirects higher Segal space]] [[!redirects higher Segal spaces]] [[!redirects 2-Segal space]] [[!redirects 2-Segal spaces]] [[!redirects higher complete Segal space]] \end{document}