\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher category theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{basic_concepts}{Basic concepts}\dotfill \pageref*{basic_concepts} \linebreak \noindent\hyperlink{basic_constructions}{Basic constructions}\dotfill \pageref*{basic_constructions} \linebreak \noindent\hyperlink{higher_presheaves}{Higher presheaves}\dotfill \pageref*{higher_presheaves} \linebreak \noindent\hyperlink{higher_universal_constructions}{Higher universal constructions}\dotfill \pageref*{higher_universal_constructions} \linebreak \noindent\hyperlink{basic_theorems}{Basic theorems}\dotfill \pageref*{basic_theorems} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{extended_cobordisms}{Extended cobordisms}\dotfill \pageref*{extended_cobordisms} \linebreak \noindent\hyperlink{models}{Models}\dotfill \pageref*{models} \linebreak \noindent\hyperlink{1categorical_models}{1-categorical models}\dotfill \pageref*{1categorical_models} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Higher category theory} is the generalization of [[category theory]] to a context where there are not only [[morphism]]s between [[object]]s, but generally [[k-morphism]]s between $(k-1)$-morphisms, for all $k \in \mathbb{N}$. Higher category theory studies the generalization of [[∞-groupoid]]s -- and hence, via the [[homotopy hypothesis]], of [[topological space]]s -- to that of [[directed space]]s and their \emph{combinatorial or algebraic models} . It is to the theory of [[∞-groupoid]]s as [[category theory]] is to the theory of [[groupoids]] (and hence of [[groups]]). These [[geometric definition of higher category|combinatorial]] or [[algebraic definition of higher category|algebraic]] models are known as [[n-category|n-categories]] or, when $n \to \infty$, as [[∞-category|∞-categories]] or [[∞-category|∞-categories]], or, in more detail, as [[(n,r)-category|(n,r)-categories]]: \begin{itemize}% \item the natural number $n$ denotes the maximal dimension of \emph{non-trivial} cells in the model, \item while the natural number $r$ denotes the maximal dimension of the \emph{directed} cells. \end{itemize} So an ordinary [[topological space]] or [[∞-groupoid]] is an [[(∞,0)-category]]: it has cells of arbitrary dimension and all of them are reversible. In contrast to that, a [[geometric definition of higher category|combinatorial]] or [[algebraic definition of higher category|algebraic]] model for a [[directed space]] in which the 1-dimensional paths may not all be reversible is an [[(∞,1)-category]]: it still has cells of arbitrary dimension, but only those of dimension greater than 1 are guaranteed to be reversible. Often it is convenient in practice to consider the case where the possible dimension $n$ of non-trivial cells is finite. This is familiar from how a [[topological space]] that happens to have vanishing [[homotopy group]]s in dimension above some $n$ -- a [[homotopy n-type]] -- is modeled by an [[n-groupoid]]. A fully directed version of this is an [[n-category]], which is short for [[(n,n)-category]]: non-trivial cells up to and including dimension $n$, and all of them allowed to be non-reversible. Actually, it is possible to go on to an $(n,n+1)$-category, or $(n+1)$-[[n-poset|poset]]; you can either consider than the $n$-cells are ordered, or else consider that there are irreversible $(n+1)$-cells which are indistinguishable. (Reversible indistinguishable $(n+1)$-cells are all identities and so might as well not exist.) For low $n$ very explicit [[algebraic definition of higher category|algebraic models]] for $n$-categories are available but in their full generality become quickly rather untractable as $n$ increases: the series starts with [[bicategory]], [[tricategory]] and [[tetracategory]]. While bicategories have found plenty of applications, already the axioms of tricategories are rather involved and their theory mainly serves to produce the statement that there is a good [[semi-strict infinity-category|semi-strictifications]] of tricategories called [[Gray-category|Gray-categories]]. Indeed, there are many \emph{strictified} models for higher categories: combinatorial or algebraic models that sacrifice full generality for a better concrete control. Notably there is a useful combinatorial/algebraic model for [[strict ∞-category|strict ∞-categories]] which, while falling short, already goes a long way towards describing general higher categorical structures. In fact, by [[Simpson's conjecture]] every [[∞-category]] is equivalent to one that looks like a [[strict ∞-category]] except for possibly having weak unit laws. The challenge of describing fully general [[∞-category|∞-categories]] is to achieve a combinatorial or algebraic control of all the higher composition rules of higher cells. One can distinguish roughly two orthogonal approaches to dealing with the problem: in the [[algebraic definition of higher category]] an algebraic machinery is set up that allows to concretely handle the explicit \emph{choices} of composites of cells. Such machinery usually involves [[operad]]ic tools in one way or other. The most sophisticated definitions of this kind are the closely related [[Batanin ∞-category]] and [[Trimble n-category|Trimble ∞-category]]. On the other hand, in the [[geometric definition of higher category]] a combinatorial machinery is set up that allows to guarantee \emph{existence} of composites of cells. In the [[simplicial model for weak omega-categories|simplicial models for weak ∞-categories]] higher categories are characterized as [[simplicial set]]s with the extra [[stuff, structure, property|property]] that certain composites exist. The issue here is to characterize these existence laws correctly. The basic example for such ``existence laws'' is the \emph{Kan-filler condition} that characterizes simplicial sets that are [[Kan complex]]es, the models for [[(∞,0)-category|(∞,0)-categories]]. More general higher categories are obtained by relaxing the Kan condition in just the right way. For instance by simply restricting the Kan-condition to just a certain sub-set of all cells yields the definition of simplicial sets that are called [[quasi-category|quasi-categories]]. These model [[(∞,1)-category|(∞,1)-categories]]. The right further relaxation of the (weak) Kan filler condition is more involved. An approach to capture this has been given by [[Dominic Verity]]`s definition of simplicial sets that are called [[complicial set]]s and [[weak complicial set]]s. One expects that every algebraic definition of higher categories admits a construction called a [[nerve]] that maps it to a [[simplicial set]] that would constitute the corresponding geometric model. Another approach to handle the geometric definition of higher categories is a recursive one that uses $n$-fold simplicial sets. This is based on the notion of [[complete Segal space]], which is essentially a variation of the concept of [[quasi-category]]. Its advantage is that its definition may be applied recursively to yield the notion of [[n-fold complete Segal space]]s. These model [[(∞,n)-category|(∞,n)-categories]] for finite $n$. Finally, a large supply of further models exists for [[(∞,1)-category|(∞,1)-categories]] in terms of [[enriched category theory]]. [[simplicial model category|Simplicially enriched model categories]] are a highly-developed toolkit for handling [[presentable (infinity,1)-category|presentable (∞,1)-categories]]. [[pretriangulated dg-category|Pretriangulated dg-enriched categories]] and [[A-infinity category|A-∞ categories]] are a comparably highly developed toolkit for handling [[stable (∞,1)-category|stable (∞,1)-categories]]. \hypertarget{basic_concepts}{}\subsection*{{Basic concepts}}\label{basic_concepts} The basic concept on which higher category theory is built is the notion of \textbf{[[k-morphism]]} for all $k \in \mathbb{N}$, equipped with a notion of composition, such that \textbf{[[coherence law]]s} are satisfied. This is what it's all about. \hypertarget{basic_constructions}{}\subsection*{{Basic constructions}}\label{basic_constructions} \hypertarget{higher_presheaves}{}\subsubsection*{{Higher presheaves}}\label{higher_presheaves} \begin{itemize}% \item [[higher topos theory]] \end{itemize} \hypertarget{higher_universal_constructions}{}\subsubsection*{{Higher universal constructions}}\label{higher_universal_constructions} \begin{itemize}% \item [[2-limit]] \item [[adjoint (∞,1)-functor|(∞,1)-adjunction]] \item [[(∞,1)-Kan extension]] \begin{itemize}% \item [[limit in a quasi-category|(∞,1)-limit]] \end{itemize} \item [[(∞,1)-Grothendieck construction]] \end{itemize} \hypertarget{basic_theorems}{}\subsection*{{Basic theorems}}\label{basic_theorems} \begin{itemize}% \item [[homotopy hypothesis]]-theorem \item [[delooping hypothesis]]-theorem \item [[periodic table]] \item [[stabilization hypothesis]]-theorem \item [[michaelshulman:exactness hypothesis]] \item [[holographic principle of higher category theory|holographic principle]] \end{itemize} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} See \begin{itemize}% \item [[applications of (higher) category theory]]. \end{itemize} \hypertarget{extended_cobordisms}{}\subsubsection*{{Extended cobordisms}}\label{extended_cobordisms} One major application of higher category theory and one of the driving forces in developing it has been [[FQFT|extended functorial quantum field theory]]. This has recently led to what may become one of the central theorems of higher category theory, the proof of the [[cobordism hypothesis]]. This roughly characterizes the [[(∞,n)-category of cobordisms]] $Bord_n$ as the free [[(∞,n)-category]] with duals on a single generator. \hypertarget{models}{}\subsection*{{Models}}\label{models} There are many different \emph{models} for bringing the abstract notion of higher category onto paper. \begin{itemize}% \item [[(n × k)-category]] \item [[n-fold category]] \item [[(n,r)-category]] \begin{itemize}% \item [[Theta-space]] \item [[∞-category]]/[[∞-category]] \item [[(∞,n)-category]] \begin{itemize}% \item [[n-fold complete Segal space]] \end{itemize} \item [[(∞,2)-category]] \item [[(∞,1)-category]] \begin{itemize}% \item [[quasi-category]] \begin{itemize}% \item [[algebraic quasi-category]] \end{itemize} \item [[simplicially enriched category]] \item [[complete Segal space]] \item [[model category]] \item [[internal category in homotopy type theory]] \end{itemize} \item [[(∞,0)-category]]/[[∞-groupoid]] \begin{itemize}% \item [[Kan complex]] \begin{itemize}% \item [[algebraic Kan complex]] \item [[simplicial T-complex]] \end{itemize} \end{itemize} \item [[n-category]] = (n,n)-category \begin{itemize}% \item [[2-category]], [[(2,1)-category]] \item [[1-category]] \item [[0-category]] \item [[(-1)-category]] \item [[(-2)-category]] \end{itemize} \item [[n-poset]] = (n$-$1,n)-category \begin{itemize}% \item [[2-poset]] \end{itemize} \item [[n-groupoid]] = (n,0)-category \begin{itemize}% \item [[2-groupoid]], [[3-groupoid]] \end{itemize} \end{itemize} \item [[categorification]]/[[decategorification]] \item [[geometric definition of higher category]] \begin{itemize}% \item [[Kan complex]] \item [[quasi-category]] \item [[simplicial model for weak ∞-categories]] \begin{itemize}% \item [[complicial set]] \item [[weak complicial set]] \end{itemize} \end{itemize} \item [[algebraic definition of higher category]] \begin{itemize}% \item [[bicategory]] \item [[bigroupoid]] \item [[tricategory]] \item [[tetracategory]] \item [[strict ∞-category]] \item [[Batanin ∞-category]] \item [[Trimble n-category|Trimble ∞-category]] \item [[Grothendieck-Maltsiniotis ∞-categories]] \end{itemize} \item [[stable homotopy theory]] \begin{itemize}% \item [[symmetric monoidal category]] \item [[symmetric monoidal (∞,1)-category]] \item [[stable (∞,1)-category]] \begin{itemize}% \item [[dg-category]] \item [[A-∞ category]] \item [[triangulated category]] \end{itemize} \end{itemize} \end{itemize} \hypertarget{1categorical_models}{}\subsubsection*{{1-categorical models}}\label{1categorical_models} \begin{itemize}% \item [[homotopical category]] \item [[model category|model category theory]] \item [[enriched category theory]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[opetopic type theory]] \end{itemize} [[!include table of category theories]] \hypertarget{references}{}\subsection*{{References}}\label{references} For a very gentle introduction to higher category theory, try \href{http://math.ucr.edu/home/baez/week73.html#tale}{The Tale of -Categories}, which begins in ``week73'' of This Week's Finds and goes on from there \ldots{}; keep clicking the links. For a slightly more formal but still pathetically easy introduction, try: \begin{itemize}% \item [[John Baez]], \href{http://arxiv.org/abs/q-alg/9705009}{An Introduction to n-Categories}, in \end{itemize} , eds. E. Moggi and G. Rosolini, Springer Lecture Notes in Computer Science vol. 1290, Springer, Berlin, 1997. For a free introductory text on $n$-categories that's \emph{full of pictures}, try this: \begin{itemize}% \item [[Eugenia Cheng]] and [[Aaron Lauda]], \href{http://www.cheng.staff.shef.ac.uk/guidebook/}{Higher-Dimensional Categories: An Illustrated Guidebook}. \end{itemize} [[Tom Leinster]] has written about ``comparative $\infty$-categoriology'' (to \href{http://golem.ph.utexas.edu/category/2008/01/comparative_smootheology.html}{borrow} a term): \begin{itemize}% \item Tom Leinster, \emph{A Survey of Definitions of n-Category} (\href{http://arxiv.org/abs/math.CT/0107188}{arXiv}) \item Tom Leinster, \emph{Higher Operads, Higher Categories} (\href{http://arxiv.org/abs/math/0305049}{arXiv}) \end{itemize} A grand picture of the theory of higher categories is drawn in \begin{itemize}% \item [[Carlos Simpson]], \emph{[[Homotopy Theory of Higher Categories]]} (\href{http://hal.archives-ouvertes.fr/docs/00/44/98/26/PDF/main.pdf}{pdf}) \end{itemize} Another collection of discussions of definitions of higher categories is given at \begin{itemize}% \item [[John Baez]], [[Peter May]] [[Approaching Higher Category Theory]] \end{itemize} A brief useful survey of approaches to the definition of higher categories is provided by the set of slides \begin{itemize}% \item [[Andre Joyal]], [[Tim Porter]], [[Peter May]], \emph{Weak categories} (\href{https://web.archive.org/web/20150326110254/http://www.ima.umn.edu/talks/workshops/SP6.7-18.04/may/PorterMay.pdf}{pdf}) \end{itemize} The theory of [[quasi-categories]] as [[(∞,1)-categories]] has reached a point where it is well developed and being applied to a wealth of problems with \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} (\href{http://arxiv.org/abs/math.CT/0608040}{arXiv}) \end{itemize} There's a lot more to add here, even if we restrict ourselves to very general texts. (More specialized stuff should go under more specialized subcategories!) [[!redirects higher category theory]] [[!redirects higher category]] [[!redirects higher categories]] [[!redirects higher-order category theory]] [[!redirects higher-order category]] [[!redirects higher-order categories]] [[!redirects higher-dimensional category theory]] [[!redirects higher-dimensional category]] [[!redirects higher-dimensional categories]] \end{document}