\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher differential geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{formalizations}{Formalizations}\dotfill \pageref*{formalizations} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} \emph{Higher differential geometry} is the incarnation of [[differential geometry]] in [[higher geometry]]. Hence it is concerned with [[n-groupoid]]-versions of [[smooth spaces]] for \emph{higher} $n$, where the traditional theory is contained in the case $n = 0$. For $n = 1$ these higher structures are \emph{[[Lie groupoids]]}, \emph{[[differentiable stacks]]}, their infinitesimal approximation by [[Lie algebroids]] and the generalization to \emph{[[smooth stacks]]}. For higher $n$ this includes ([[deloopings]] of) [[Lie 2-groups]], [[Lie 3-groups]]. Fully generally, higher differential geometry hence replaces [[smooth manifolds]] (and possibly variants such as [[supermanifolds]], [[formal manifolds]], [[dg-manifolds]] etc.) by \emph{[[∞-stacks]]} ([[(∞,1)-sheaves]]) on the [[site]] of all such. Technically this means that higher differential geometry is the study of an \emph{[[(∞,1)-topos]]} into which standard [[differential geometry]] faithfully embeds. This then allows to speak of [[smooth ∞-groups]], [[Lie ∞-algebroids]]. If the ambient [[(∞,1)-topos]] is not [[n-localic (∞,1)-topos|1-localic]] (for instance over a genuine site of [[dg-manifolds]]) then one also speaks of \emph{[[derived differential geometry]]}. See at \emph{[[motivation for higher differential geometry]]} for motivation. The standard variants of [[differential geometry]] have their higher analogs, for instance [[symplectic geometry]] generalizes to [[higher symplectic geometry]] and [[prequantum geometry]] to [[higher prequantum geometry]]. \hypertarget{formalizations}{}\subsection*{{Formalizations}}\label{formalizations} One axiomatization is [[cohesion]] and [[differential cohesion]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Smooth∞Grpd]], [[SuperFormalSmooth∞Grpd]]. \item [[Lie 2-groupoid]] \item [[double Lie algebroid]], [[Lie algebroid-groupoid]], [[double Lie groupoid]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[higher Lie theory]] \item [[higher prequantum geometry]] \item [[higher complex analytic geometry]] \item [[L-infinity algebras in physics]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Exposition is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Higher Structures|Higher Structures in Mathematics and Physics]]}, talk at \href{https://www.mfo.de/occasion/1651a/www_view}{Oberwolfach Workshop 1651a}, 2016 Dec. 18-23 \end{itemize} Details are in \begin{itemize}% \item \emph{[[geometry of physics]]}, [[geometry of physics -- categories and toposes|categories and toposes]], \ldots{} \end{itemize} The most classical aspect of higher differential geometry is the theory of [[orbifolds]], [[Lie groupoids]] and [[Lie algebroids]] and their application in [[foliation theory]]. Original reference here include \begin{itemize}% \item [[Charles Ehresmann]], \emph{Cat\'e{}gories topologiques et cat\'e{}gories diff\'e{}rentiables} Colloque de G\'e{}ometrie Differentielle Globale (Bruxelles, 1958), 137--150, Centre Belge Rech. Math., Louvain, 1959; \item [[Ieke Moerdijk]], [[Dorette Pronk]], \emph{Orbifolds, sheaves and groupoids}, K-theory 12 3-21 (1997) (\href{http://www.math.colostate.edu/~renzo/teaching/Orbifolds/pronk.pdf}{pdf}), \emph{Orbifolds as Groupoids: an Introduction} (\href{http://arxiv.org/abs/math.DG/0203100}{arXiv:math.DG/0203100}) \end{itemize} and standard textbook accounts include \begin{itemize}% \item [[Ieke Moerdijk]], [[Janez Mrcun]] \emph{Introduction to Foliations and Lie Groupoids}, Cambridge Studies in Advanced Mathematics 91, Cambridge University Press, Cambridge, (2003) \item [[Kirill Mackenzie]], \emph{General Theory of Lie Groupoids and Lie Algebroids,} Cambridge University Press, 2005, xxxviii + 501 pages (\href{http://kchmackenzie.staff.shef.ac.uk/gt.html}{website}) \item [[Kirill Mackenzie]], \emph{Lie groupoids and Lie algebroids in differential geometry}, London Mathematical Society Lecture Note Series, 124. Cambridge University Press, Cambridge, 1987. xvi+327 pp (\href{http://www.ams.org/mathscinet-getitem?mr=896907}{MathSciNet}) \end{itemize} For properly appreciating the [[homotopy theory]] of Lie groupoids and for passage to more general higher differential geometry it is crucial to understand Lie groupoids as [[smooth stacks]] which are [[geometric stack|geometric]]: \emph{[[differentiable stacks]]}. Each of the following references provides introduction to this point of view: \begin{itemize}% \item [[Jochen Heinloth]], \emph{Some notes on differentiable stacks} (\href{http://www.uni-due.de/~hm0002/stacks.pdf}{pdf}) \item [[Kai Behrend]], [[Ping Xu]], \emph{Differentiable Stacks and Gerbes} (\href{http://front.math.ucdavis.edu/0605.5694}{arXiv:0605.5694}). \item Metzler, \emph{Topological and smooth stacks} (\href{http://arxiv.org/abs/math/0306176}{arXiv:math/0306176}) \end{itemize} As a warmup for these considerations it may be useful to first look at [[smooth spaces]] given by just [[sheaves]] on the site of [[smooth manifolds]], see at \begin{itemize}% \item [[Urs Schreiber]], \emph{[[geometry of physics]] -- [[geometry of physics -- smooth spaces|smooth spaces]]} \end{itemize} Passing from here to more general [[smooth groupoids]], to [[smooth 2-groupoids]] and then eventually to [[smooth ∞-groupoids]] involves [[(∞,1)-topos theory]] proper, with some tools as discussed at \emph{[[model structure on simplicial presheaves]]} over the [[site]] of [[smooth manifolds]], or equivalently just over its [[dense subsite]] of [[Cartesian spaces]]. For motivation for this step see also \begin{itemize}% \item [[Urs Schreiber]], \emph{[[twisted smooth cohomology in string theory]]}, lectures at \emph{\href{http://maths-old.anu.edu.au/esi/2012/}{ESI program on quantum fields and K-theory}}, 2012 \end{itemize} Introductory exposition includes the introductory sections of \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Cech Cocycles for Differential characteristic Classes]]}, Advances in Theoretical and Mathematical Physics, Volume 16 Issue 1 (2012), pages 149-250 (\href{http://arxiv.org/abs/1011.4735}{arXiv:1011.4735}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{A higher stacky perspective on Chern-Simons theory}, in Damien Calaque et al. (eds.) \emph{Mathematical Aspects of Quantum Field Theories} Mathematical Physics Studies, Springer 2014 (\href{http://arxiv.org/abs/1301.2580}{arXiv:1301.2580}) \end{itemize} and sections 1.2.4 ([[geometry of physics -- smooth homotopy types]]) as well as section 1.2.5 ([[geometry of physics -- principal bundles]]) in the Introduction section of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} (\href{http://arxiv.org/abs/1310.7930}{arXiv:1310.7930}) \end{itemize} This goes on to discuss [[differential cohomology]] and the [[differential cohomology diagram]] formulated in [[stable homotopy type|stable]] objects in [[smooth ∞-groupoids]] (hence in [[sheaves of spectra]] on the [[site]] of [[smooth manifolds]]/[[Cartesian spaces]]) in higher differential geometry, see \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], \emph{Differential cohomology theories as sheaves of spectra} (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \end{itemize} \end{document}