\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher dimensional Chern-Simons theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{higher_abelian_chernsimons_theory}{Higher abelian Chern-Simons theory.}\dotfill \pageref*{higher_abelian_chernsimons_theory} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{formulation_in_chernsimons_theory}{Formulation in $\infty$-Chern-Simons theory}\dotfill \pageref*{formulation_in_chernsimons_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{holographic_relation_to_dimensional_theory}{Holographic relation to $4k+2$-dimensional theory}\dotfill \pageref*{holographic_relation_to_dimensional_theory} \linebreak \noindent\hyperlink{BackgroundCharge}{Background charges and square root action functionals}\dotfill \pageref*{BackgroundCharge} \linebreak \noindent\hyperlink{higherdimensional_nonabelian_cs_theory}{Higher-dimensional non-abelian CS theory}\dotfill \pageref*{higherdimensional_nonabelian_cs_theory} \linebreak \noindent\hyperlink{1d_chernsimons_theory}{1d Chern-Simons theory}\dotfill \pageref*{1d_chernsimons_theory} \linebreak \noindent\hyperlink{2d_chernsimons_theory}{2d Chern-Simons theory}\dotfill \pageref*{2d_chernsimons_theory} \linebreak \noindent\hyperlink{3d_chernsimons_theory}{3d Chern-Simons theory}\dotfill \pageref*{3d_chernsimons_theory} \linebreak \noindent\hyperlink{4d_chernsimons_theory}{4d Chern-Simons theory}\dotfill \pageref*{4d_chernsimons_theory} \linebreak \noindent\hyperlink{5d_chernsimons_theory}{5d Chern-Simons theory}\dotfill \pageref*{5d_chernsimons_theory} \linebreak \noindent\hyperlink{6d_chernsimons_theory}{6d Chern-Simons theory}\dotfill \pageref*{6d_chernsimons_theory} \linebreak \noindent\hyperlink{7d_chernsimons_theory}{7d Chern-Simons theory}\dotfill \pageref*{7d_chernsimons_theory} \linebreak \noindent\hyperlink{11d_chernsimons_theory}{11d Chern-Simons theory}\dotfill \pageref*{11d_chernsimons_theory} \linebreak \noindent\hyperlink{infinitedimensional_chernsimons_theory}{Infinite-dimensional Chern-Simons theory}\dotfill \pageref*{infinitedimensional_chernsimons_theory} \linebreak \noindent\hyperlink{aksz_models}{AKSZ $\sigma$-models}\dotfill \pageref*{aksz_models} \linebreak \noindent\hyperlink{string_field_theory}{String field theory}\dotfill \pageref*{string_field_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{formulation_in_differential_cohomology}{Formulation in differential cohomology}\dotfill \pageref*{formulation_in_differential_cohomology} \linebreak \noindent\hyperlink{relation_to_selfdual_theories}{Relation to self-dual theories}\dotfill \pageref*{relation_to_selfdual_theories} \linebreak \noindent\hyperlink{higher_chernsimons_supergravity}{Higher Chern-Simons (super)gravity}\dotfill \pageref*{higher_chernsimons_supergravity} \linebreak \noindent\hyperlink{ReferencesInvariants}{Higher Chern-Simons invariants}\dotfill \pageref*{ReferencesInvariants} \linebreak \noindent\hyperlink{formulation_in_chernsimons_theory_2}{Formulation in $\infty$-Chern-Simons theory}\dotfill \pageref*{formulation_in_chernsimons_theory_2} \linebreak \noindent\hyperlink{boundary_theories}{Boundary theories}\dotfill \pageref*{boundary_theories} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There are two kinds of higher dimensional generalizations of ordinary 3-dimensional [[Chern-Simons theory]] that are often called ``higher dimensional Chern-Simons theory'' in the literature. Both are special cases of [[schreiber:infinity-Chern-Simons theory]]. Recall that for $\mathfrak{g}$ a [[Lie algebra]] (not necessarily abelian) with non-generate binary [[invariant polynomial]] $\langle -,-\rangle$, the corresponding [[schreiber:infinity-Chern-Simons theory]] [[QFT]] is ordinary [[Chern-Simons theory]] in dimension 3. But also every other [[invariant polynomial]] $\langle-,-,\cdots,-\rangle$ on $\mathfrak{g}$ induces an [[schreiber:infinity-Chern-Simons theory]], now in higher dimension. Moreover, every [[line Lie n-algebra]] $b^n \mathbb{R}$ carries a canonical invariant polynomial. The [[schreiber:infinity-Chern-Simons theory]] associated with that is often called \emph{abelian higher dimensional CS theory} . (\ldots{}) More general ``higher''-generalization of Chern-Simons theory to [[schreiber:infinity-Chern-Simons theory]] allow $\mathfrak{g}$ to be a (nonabelian) [[Lie 2-algebra]] or more generally a (nonabelian) [[L-infinity algebra]] or fully generally a [[L-infinity algebroid]]. \hypertarget{higher_abelian_chernsimons_theory}{}\subsection*{{Higher abelian Chern-Simons theory.}}\label{higher_abelian_chernsimons_theory} \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} The definition of higher abelian Chern-Simons theory is simple \emph{locally} when certain global [[cohomology|cohomological]] effects can be ignored. We first give the simple local definition and then the full global definition. Let $k \in \mathbb{N}$ be a [[natural number]], let $d = 4 k + 3$ and let $\Sigma$ be a [[compact space|compact]] [[smooth manifold]] of [[dimension]] $d$. Then the \emph{simple version} of abelian $d$-dimensional Chern-Simons theory is defined as follows. \begin{itemize}% \item the [[configuration space]] is the [[space]] of [[differential form]]s on $\Sigma$ of degree $2k+1$ \begin{displaymath} Conf_{simpl} = \Omega^{2k+1}(\Sigma) \,, \end{displaymath} \item the [[Lagrangian]] is \begin{displaymath} L : B \mapsto B \wedge d_{dR} B \,, \end{displaymath} \item and the [[action functional]] \begin{displaymath} S : \Omega^{2k+1}(\Sigma) \to \mathbb{R} \end{displaymath} is therefore \begin{displaymath} S : B \mapsto \int_\Sigma B \wedge d_{dR}B \,. \end{displaymath} \end{itemize} Notice that generally for an $n$-form $B$ on a closed $(2n+1)$-dimensional manifold $\Sigma$ we have \begin{displaymath} \int_\Sigma B \wedge d_{dR} B = (-1)^{1+n + n(1+n)} \int_\Sigma B \wedge d_{dR} B \end{displaymath} by first using integration by parts and then switching the order of the wedge factors. Therefore this kind of action vanishes identically when $deg B$ is even. This is the reason for the above assumption that $deg B = 2k+1$ for $k \in \mathbb{N}$ and hence that the Chern-Simons theory is in dimension $4k+3$. In the full theory instead the configuration space is \begin{displaymath} Conf = \mathbf{H}_{diff}^{2k+2}(\Sigma) \,, \end{displaymath} the space of [[circle n-bundle with connection|circle (2k+1)-bundles with connection]] (given by [[cocycle]]s in degree $2k+2$ [[ordinary differential cohomology]]). This contains the above simplified configuration space as the subspace of $(2k+1)$-connections whose underlying circle $(2k+1)$-bundle is trivial. The action functional is given by \begin{displaymath} S : \hat B \mapsto \int_\Sigma \hat B \cup \hat B \,, \end{displaymath} where now the integral is [[fiber integration in ordinary differential cohomology]] and in the integrand we have the [[cup product in ordinary differential cohomology]] of differential cocycles. (See for instance (\hyperlink{GT}{GT, section 4.1}), (\hyperlink{FMS}{FMS, (1.28)})). \hypertarget{formulation_in_chernsimons_theory}{}\subsubsection*{{Formulation in $\infty$-Chern-Simons theory}}\label{formulation_in_chernsimons_theory} We discuss how the above definition arises as a special case of the general notion of [[schreiber:infinity-Chern-Simons theory]]. These theories are defined by \begin{itemize}% \item an [[L-infinity algebroid]] $\mathfrak{a}$; \item equipped with an [[invariant polynomial]] $\langle \rangle$. \end{itemize} The abelian higher dimensional Chern-Simons theories in dimension $4k+3$ are the special case of this general situation where \begin{itemize}% \item $\mathfrak{a} = b^{2k+1}\mathbb{R}$ is the [[line Lie n-algebra|line Lie (2k+1)-algebra]], the $(2k+1)$-fold [[delooping]] of the abelian [[Lie algebra]] $\mathbb{R}$; \item $\langle - \rangle$ is the canonical quadratic [[invariant polynomial]] on this. \end{itemize} (\ldots{}) See (\hyperlink{FRS}{FRS, 4.1.4}). \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} Higher dimensional abelian Chern-Simons theories appear automatically as components of systems of higher [[supergravity]], for instance in [[11-dimensional supergravity]] (they are automatically induced by the requirement of [[local supersymmetry]] in these higher dimensional supergravity theories). \begin{itemize}% \item see at \emph{[[M5-brane]]} the section \emph{\href{http://ncatlab.org/nlab/show/M5-brane#7dCSDual}{Conformal blocks and 7d Chern-Simons dual}}. \end{itemize} \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \hypertarget{holographic_relation_to_dimensional_theory}{}\paragraph*{{Holographic relation to $4k+2$-dimensional theory}}\label{holographic_relation_to_dimensional_theory} Higher Chern-Simons theory in dimension $4k+3$ is related by a [[holographic principle]] to [[self-dual higher gauge theory]] in dimension $4k+2$ (at least in the abelian case). \begin{itemize}% \item $(k=0)$: ordinary 3-dimensional [[Chern-Simons theory]] is related to a [[string]] [[sigma-model]] on its boundary; \item $(k=1)$: 7-dimensional Chern-Simons theory is related to a [[fivebrane]] model on its boundary; \item $(k=2)$: 11-dimensional Chern-Simons theory is related to a parts of a [[type II string theory]] on its bounday (or that of the space-filling 9-[[brane]], if one wishes) (\hyperlink{BelovMoore}{BelovMoore}) \end{itemize} \hypertarget{BackgroundCharge}{}\paragraph*{{Background charges and square root action functionals}}\label{BackgroundCharge} The [[supergravity C-field]] is an example of a general phenomenon of higher abelian Chern-Simons QFTs in the presence of \emph{background charge}. This phenomenon was originally noticed in (\hyperlink{Witten96}{Witten}) and then made precise in (\hyperlink{HopkinsSinger05}{HopkinsSinger 05}). The holographic dual of this phenomenon is that of self-dual higher gauge theories, which for the supergravity $C$-field is the 2-form theory on the [[M5-brane]] -- see there for a discussion of this example. Here we discuss this effect generally, for higher abelian Chern-Simons theory in arbitrary dimension $4k+3$. Fix some natural number $k \in \mathbb{N}$ and an [[orientation|oriented]] [[manifold]] ([[compact topological space|compact]] [[manifold with boundary|with boundary]]) $X$ of [[dimension]] $4 k + 3$. The gauge equivalence class of a $(2k+1)$-form gauge field $\hat G$ on $X$ is an element in the [[ordinary differential cohomology]] group $\hat H^{2k+2}(X)$. The [[cup product]] $\hat G \cup \hat G \in \hat H^{4k+4}(X)$ of this with itself has a natural [[higher holonomy]] over $X$, denoted \begin{displaymath} \exp(i S (-)) : \hat H^{2k+2}(X) \to U(1) \end{displaymath} \begin{displaymath} \hat G \mapsto \exp(i \int_X \hat G \cup \hat G) \,. \end{displaymath} This is the exponentiated [[action functional]] for bare $(4k+3)$-dimensional abelian Chern-Simons theory, as discussed above. Observe now that the above action functional may be regarded as a \emph{[[quadratic form]]} on the [[cohomology group]] $\hat H^{2k+2}(X)$. The corresponding [[bilinear form]] is the (``[[secondary characteristic class|secondary]]'', since $X$ is of dimension $4k+3$ instead of $4k+4$) \emph{[[intersection pairing]]} \begin{displaymath} \langle -,-\rangle : \hat H^{2k+2}(X) \times \hat H^{2k+2}(X) \to U(1) \end{displaymath} \begin{displaymath} (\hat a_1 , \hat a_2) \mapsto \exp(i \int_X \hat a_1 \cup \hat a_2 ) \,. \end{displaymath} But note that from $\exp(i S(-))$ we do \emph{not} obtain a \emph{[[quadratic refinement]]}\newline of the pairing. A quadratic refinement is, by definition, a function \begin{displaymath} q : \hat H^{2k+2}(X) \to U(1) \end{displaymath} (not necessarily homogenous of degree 2 as $\exp(i S(-))$ is), such that the [[intersection pairing]] is reobtained from it by the polarization formula \begin{displaymath} \langle \hat a_1, \hat a_2\rangle = q(\hat a_1 + \hat a_2) q(\hat a_1)^{-1} q(\hat a_2)^{-1} q(0) \,. \end{displaymath} If we took $q := \exp(i S(-))$, then the above formula would yield not $\langle -,-\rangle$, but the square $\langle -,-\rangle^2$, given by (the exponentiation of) \emph{twice} the integral. The observation in (\hyperlink{Witten96}{Witten96}) was that for the correct [[holographic principle|holographic]] physics, we need instead an action functional which is indeed a genuine [[quadratic refinement]] of the [[intersection pairing]]. But since the [[differential cohomology|differential classes]] in $\hat H^{2k+2}(X)$ refine \emph{[[integral cohomology]]}, we cannot in general simply divide by 2 and pass from $\exp( i \int_X \hat G \cup \hat G)$ to $\exp( i \int_X \frac{1}{2} \hat G \cup \hat G)$. The integrand in the latter expression does not make sense in general in differential cohomology. If one tried to write it out in the ``obvious'' local formulas one would find that it is a functional on fields which is not [[gauge invariance|gauge invariant]]. The analog of this fact is familiar from nonabelian $G$-[[Chern-Simons theory]] with [[simply connected space|simply connected]] $G$, where also the theory is consistent only at interger \emph{levels}. The ``level'' here is nothing but the underlying integral class $G \cup G$. Therefore the only way to obtain a [[square root]] of the [[quadratic form]] $\exp(i S(-))$ is to \emph{shift its origin}. Here we think of the analogy with a quadratic form $q : x \mapsto x^2$ on the [[real numbers]] (a parabola in the plane). Replacing this by $q^{\lambda} : x \mapsto x^2 + \lambda x$ for some real number $\lambda$ means keeping the shape of the form, but shifting its [[minimum]] from 0 to $-\frac{1}{2}\lambda$. If we think of this as the potential term for a scalar field $x$ previously with rotation-symmetric dynamics about $x = 0$, then the new potential exhibits [[spontaneous symmetry breaking]]: its ground state is now at $x = -\frac{1}{2}\lambda$ (and has [[energy]] $-\frac{1}{4}\lambda^2$ there). We may say that there is a \emph{background field} or \emph{background [[charge]]} that pushes the field out of its free equilibrium. To lift this reasoning to our action quadratic form $\exp(i S(-))$ on differential cocycles, we need a differential class $\hat \lambda \in H^{2k+2}(X)$ such that for every $\hat a \in H^{2k+2}(X)$ the composite class \begin{displaymath} \hat a \cup \hat a + \hat a \cup \hat \lambda \in H^{4k+4}(X) \end{displaymath} is even, hence is divisible by 2. Because then we could define a shifted action functional \begin{displaymath} \exp(i S^\lambda(-)) : \hat a \mapsto \exp(i \int_X \frac{1}{2}(\hat a \cup \hat a + \hat a \cup \hat \lambda)) \,, \end{displaymath} where now the fraction $\frac{1}{2}$ in the integrand does make sense. One directly sees that if this exists, then this shifted action is indeed now a [[quadratic refinement]] of the [[intersection pairing]] \begin{displaymath} \exp(i S^\lambda(\hat a + \hat b)) \exp(i S^\lambda(\hat a))^{-1} \exp(i S^\lambda(\hat b))^{-1} \exp(i S^\lambda(0) = \exp(i \int_X \hat a \cup \hat b)) \,. \end{displaymath} The condition on the existence of $\hat \lambda$ here means equivalently that the image of the underlying integral class in cohomology with coefficients in $\mathbb{Z}_2$ vanishes: \begin{displaymath} (a)_{\mathbb{Z}_2} \cup (a)_{\mathbb{Z}_2} + (a)_{\mathbb{Z}_2} \cup (\lambda)_{\mathbb{Z}_2} = 0 \in H^{4k+4}(X, \mathbb{Z}_2) \,, \end{displaymath} Precisely such a class $(\lambda)_{\mathbb{Z}_2}$ does uniquely exist on every oriented manifold. It is called the \emph{[[Wu class]]} $\nu_{2k+2} \in H^{2k+2}(X,\mathbb{Z}_2)$, and may be \emph{defined} by this condition. Moreover, if $X$ is a [[spin structure|Spin-manifold]], then every second [[Wu class]], $\nu_{4k}$, has a pre-image in [[integral cohomology]], hence $\lambda$ does exist as required above \begin{displaymath} (\lambda)_{\mathbb{Z}_2} = \nu_{2k+2} \,. \end{displaymath} It is given by [[polynomials]] in the [[Pontryagin classes]] of $X$. For instance the degree-4 Wu class (for $k = 1$) is refined by the [[first fractional Pontryagin class]] $\frac{1}{2}p_1$ \begin{displaymath} (\frac{1}{2}p_1)_{\mathbb{Z}_2} = \nu_4 \,. \end{displaymath} This was the original observation in \hyperlink{Witten96}{Witten96, around (3.3)}. Notice that the [[equations of motion]] of the shifted action $\exp(i S^\lambda(\hat a))$ are no longer $F_a = 0$, but are now $F_a = - \frac{1}{2}F_\lambda$. Comparing this to the [[Maxwell equations]], we see that $-\frac{1}{2}\hat \lambda$ here plays the role of a \emph{background [[charge]]} (or rather, of the \emph{background [[current]]} that underlies a background charge). We therefore think of $\exp(i S^\lambda(-))$ as the exponentiated action functional for \emph{higher dimensional abelian Chern-Simons theory with background charge $-\frac{1}{2}\lambda$}. This of course only makes sense if $X$ is such that $\lambda$ is further divisible by 2, which we will assume now. In (\hyperlink{HopkinsSinger05}{Hopkins-Singer 05}) is discussed a way to make sense of the further division in general if one passes to a certain notion of twisted differential cohomology. One can also adopt a different perspective and interpret the condition that $\frac{1}{2}p_1$ is further divisible by 2 precisely as a $\mathrm{String}^{2a}$-structure (\href{http://ncatlab.org/schreiber/show/Twisted+Differential+String+and+Fivebrane+Structures}{SSS3}). This is a higher analog of a [[Spin{\tt \symbol{94}}c structure]]. With respect to the shifted action functional it makes sense to introduce the shifted field \begin{displaymath} \hat G := \hat a + \frac{1}{2}\lambda \,. \end{displaymath} This is simply a re-parameterization such that the Chern-Simons equations of motion again look homogenous, namely $FieldStrength(\hat G) = 0$. In terms of this shifted field the action $\exp(i S^\lambda(\hat a))$ from above equivalently reads \begin{displaymath} \exp(i S^\lambda(\hat G)) = \exp( i \int_X \frac{1}{2}(\hat G \cup \hat G - (\frac{1}{2}\hat \lambda)^2) ) \,. \end{displaymath} This is the form of the action functional first given as (\hyperlink{Witten96}{Witten96 (3.6)}) in for the case $k = 1$. In the language of [[twisted differential c-structures]], we may summarize this sitation as follows: in order for the action functional of higher abelian Chern-Simons theory to be correctly divisible, the images of the fields in $\mathbb{Z}_2$-cohomology need to form a [[twisted Wu structure]]. Therefore the fields themselves need to constitute a \emph{twisted $\lambda$-structure}. For $k = 1$ this is a [[twisted differential string structure|twisted string structure]] and explains for instance the quantization condition on the [[supergravity C-field]] in [[11-dimensional supergravity]]. For that case see also the corresponding discussion at \emph{[[M5-brane]]}. \hypertarget{higherdimensional_nonabelian_cs_theory}{}\subsection*{{Higher-dimensional non-abelian CS theory}}\label{higherdimensional_nonabelian_cs_theory} Chern-Simons actions for [[Lie algebra]]s $\mathfrak{g}$ but with higher-degree [[invariant polynomial]]s have in particular received attention for $\mathfrak{g} = \mathfrak{siso}$ the [[super Poincare Lie algebra]]. In this case these action functionals can be regarded as defining higher [[Chern-Simons supergravity]]. \hypertarget{1d_chernsimons_theory}{}\subsubsection*{{1d Chern-Simons theory}}\label{1d_chernsimons_theory} \begin{itemize}% \item [[1d Chern-Simons theory]] \end{itemize} \hypertarget{2d_chernsimons_theory}{}\subsubsection*{{2d Chern-Simons theory}}\label{2d_chernsimons_theory} \begin{itemize}% \item [[2d Chern-Simons theory]] \begin{itemize}% \item [[Poisson sigma-model]] \end{itemize} \end{itemize} \hypertarget{3d_chernsimons_theory}{}\subsubsection*{{3d Chern-Simons theory}}\label{3d_chernsimons_theory} \begin{itemize}% \item [[3d Chern-Simons theory]] \begin{itemize}% \item [[Chern-Simons theory]] \item [[Dijkgraaf-Witten model]] \item [[Courant sigma-model]] \end{itemize} \end{itemize} \hypertarget{4d_chernsimons_theory}{}\subsubsection*{{4d Chern-Simons theory}}\label{4d_chernsimons_theory} \begin{itemize}% \item [[4d Chern-Simons theory]] \begin{itemize}% \item [[Yetter model]] \end{itemize} \end{itemize} \hypertarget{5d_chernsimons_theory}{}\subsubsection*{{5d Chern-Simons theory}}\label{5d_chernsimons_theory} \begin{itemize}% \item [[5d Chern-Simons theory]] \end{itemize} \hypertarget{6d_chernsimons_theory}{}\subsubsection*{{6d Chern-Simons theory}}\label{6d_chernsimons_theory} \begin{itemize}% \item [[6d Chern-Simons theory]] \end{itemize} \hypertarget{7d_chernsimons_theory}{}\subsubsection*{{7d Chern-Simons theory}}\label{7d_chernsimons_theory} \begin{itemize}% \item [[7d Chern-Simons theory]] \end{itemize} \hypertarget{11d_chernsimons_theory}{}\subsubsection*{{11d Chern-Simons theory}}\label{11d_chernsimons_theory} \begin{itemize}% \item [[11d Chern-Simons theory]] \end{itemize} \hypertarget{infinitedimensional_chernsimons_theory}{}\subsubsection*{{Infinite-dimensional Chern-Simons theory}}\label{infinitedimensional_chernsimons_theory} \begin{itemize}% \item [[infinite-dimensional Chern-Simons theory]] \end{itemize} \hypertarget{aksz_models}{}\subsubsection*{{AKSZ $\sigma$-models}}\label{aksz_models} \begin{itemize}% \item [[AKSZ sigma-model]] \end{itemize} \hypertarget{string_field_theory}{}\subsubsection*{{String field theory}}\label{string_field_theory} \begin{itemize}% \item [[string field theory]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Wu classes]] \item [[schreiber:infinity-Chern-Simons theory]] \begin{itemize}% \item [[Chern-Simons theory]] \item \textbf{higher dimensional Chern-Simons theory} \begin{itemize}% \item [[Chern-Simons gravity]] \end{itemize} \item [[AKSZ sigma-model]] \begin{itemize}% \item [[Poisson sigma model]] \begin{itemize}% \item [[A-model]], [[B-model]] \end{itemize} \item [[Courant sigma-model]] \begin{itemize}% \item [[Chern-Simons theory]] \end{itemize} \end{itemize} \item [[1-dimensional Chern-Simons theory]] \end{itemize} \item [[higher dimensional WZW models]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} For higher dimensional non-abelian Chern-Simons theory see for instance \begin{itemize}% \item M\'a{}ximo Ba\~n{}ados, \emph{Higher dimensional Chern-Simons theories and black holes} (\href{http://worldscibooks.com/etextbook/4388/4388_chap01.pdf}{pdf}) \item M\'a{}ximo Ba\~n{}ados, Luis Garay, [[Marc Henneaux]], \emph{Existence of local degrees of freedom for higher dimensional pure Chern-Simons theories} Phys. Rev. D 53, R593--R596 (1996) (\href{http://prd.aps.org/pdf/PRD/v53/i2/pR593_1}{pdf}) \item M\'a{}ximo Ba\~n{}ados, Luis Garay, [[Marc Henneaux]], \emph{The dynamical structure of higher dimensional Chern-Simons theory} (\href{http://arxiv.org/abs/hep-th/9605159}{arXiv:hep-th/9605159}) \item G Giachetta, L Mangiarotti, G Sardanashvily, \emph{Noether conservation laws in higher-dimensional Chern-Simons theory} Modern Physics Letters A Volume 18(2003) (\href{http://gnsardan.appfarm.ru/a84.pdf}{pdf}) \end{itemize} \hypertarget{formulation_in_differential_cohomology}{}\subsubsection*{{Formulation in differential cohomology}}\label{formulation_in_differential_cohomology} For the formulation of abelian Chern-Simons theory by fiber integration over cup products in [[ordinary differential cohomology]] see \begin{itemize}% \item Enore Guadagnini, Frank Thuillier, \emph{Deligne-Beilinson cohomology and abelian links invariants} SIGMA 4 (2008), 078, 30 (\href{http://arxiv.org/abs/0801.1445}{arXiv:0801.1445}) \item R. Floreanini, R. Percacci, \emph{Higher dimensional abelian Chern-Simons theory} Physics Letters B Volume 224, Issue 3, 29 (1989) \item [[Daniel Freed]], [[Gregory Moore]], [[Graeme Segal]], \emph{The Uncertainty of Fluxes} (\href{http://arxiv.org/abs/hep-th/0605198}{arXiv:hep-th/0605198}) \end{itemize} \hypertarget{relation_to_selfdual_theories}{}\subsubsection*{{Relation to self-dual theories}}\label{relation_to_selfdual_theories} The idea of describing [[self-dual higher gauge theory]] by abelian Chern-Simons theory in one dimension higher originates in \begin{itemize}% \item [[Edward Witten]], \emph{Five-Brane Effective Action In M-Theory} Journal of Geometry and Physics, Volume 22, Issue 2, May 1997, Pages 103-133 (\href{http://arxiv.org/abs/hep-th/9610234}{arXiv:hep-th/9610234}) \end{itemize} (there for the [[6d (2,0)-susy QFT]] on the [[fivebrane]]) and \begin{itemize}% \item [[Edward Witten]], \emph{Duality Relations Among Topological Effects In String Theory} (\href{http://arxiv.org/abs/hep-th/9912086}{arXiv:hep-th/9912086}) \end{itemize} Motivated by this the [[differential cohomology]] of self-dual fields had been discussed in \begin{itemize}% \item [[Mike Hopkins]], [[Isadore Singer]], \emph{[[Quadratic Functions in Geometry, Topology, and M-Theory]]}, 2005 \end{itemize} More discussion of the general principle is in \begin{itemize}% \item Dmitriy Belov, [[Greg Moore]], \emph{Holographic Action for the Self-Dual Field} (\href{http://arxiv.org/abs/hep-th/0605038}{arXiv:hep-th/0605038}) \end{itemize} The application of this to the description of [[type II string theory]] in 10-dimensions to [[schreiber:infinity-Chern-Simons theory|11-dimensional Chern-Simons theory]] is in the followup \begin{itemize}% \item Dmitriy Belov, [[Greg Moore]], \emph{Type II Actions from 11-Dimensional Chern-Simons Theories} (\href{http://arxiv.org/abs/hep-th/0611020}{arXiv:hep-th/0611020}) \end{itemize} \hypertarget{higher_chernsimons_supergravity}{}\subsubsection*{{Higher Chern-Simons (super)gravity}}\label{higher_chernsimons_supergravity} There are various discussions identifying or conjecturing higher dimensional Chern-Simons theories as parts of or related to [[gravity]] and [[supergravity]]. An original articles includes \begin{itemize}% \item M\'a{}ximo Ba\~n{}ados, Ricardo Troncoso, Jorge Zanelli, \emph{Higher dimensional Chern-Simons supergravity} Phys. Rev. D 54, 2605--2611 (1996) (\href{http://cdsweb.cern.ch/record/293524/files/9601003.pdf}{pdf}) \end{itemize} An introduction and survey is in \begin{itemize}% \item Jorge Zanelli, \emph{Lecture notes on Chern-Simons (super-)gravities} (\href{http://arxiv.org/abs/hep-th/0502193}{arXiv:hep-th/0502193}) \end{itemize} For more references see at \begin{itemize}% \item \emph{[[Chern-Simons gravity]]} . \end{itemize} \hypertarget{ReferencesInvariants}{}\subsubsection*{{Higher Chern-Simons invariants}}\label{ReferencesInvariants} \begin{itemize}% \item F. Thuillier, \emph{Deligne-Beilinson cohomology and abelian link invariants: torsion case} J. Math. Phys. 50, 122301 (2009) \item B. Broda, \emph{Higher-dimensional Chern-Simons theory and link invariants} Physics Letters B Volume 280, Issues 3-4, 30 (1992) Pages 213-218 \item L. Gallot, E. Pilon, F. Thuillier, \emph{Higher dimensional abelian Chern-Simons theories and their link invariants} (\href{http://arxiv.org/abs/1207.1270}{arXiv:1207.1270}) \end{itemize} \hypertarget{formulation_in_chernsimons_theory_2}{}\subsubsection*{{Formulation in $\infty$-Chern-Simons theory}}\label{formulation_in_chernsimons_theory_2} Below (5.11) of (\hyperlink{HopkinsSinger05}{Hopkins-Singer 05}). Section 4.1.4 of \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher Chern-Weil Derivation of AKSZ Sigma-Models]]} \end{itemize} Section 4.4 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} \hypertarget{boundary_theories}{}\subsubsection*{{Boundary theories}}\label{boundary_theories} Boundary [[higher dimensional WZW models]] for nonabelian [[higher dimensional Chern-Simons theory]] are discussed in \begin{itemize}% \item J. Gegenberg , G. Kunstatter, \emph{Boundary Dynamics of Higher Dimensional Chern-Simons Gravity} (\href{http://arxiv.org/abs/hep-th/0010020}{arXiv:hep-th/0010020}) \item J. Gegenberg , G. Kunstatter, \emph{Boundary Dynamics of Higher Dimensional AdS Spacetime} (\href{http://arxiv.org/abs/hep-th/9905228}{arXiv:http://arxiv.org/abs/hep-th/9905228}) \end{itemize} [[!redirects higher Chern-Simons theory]] [[!redirects higher Chern-Simons theories]] [[!redirects higher dimensional Chern-Simons theories]] \end{document}