\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher gauge field} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An ordinary [[gauge field]] (such as the [[electromagnetic field]] or the fields that induce the [[nuclear force]]) is a [[field (physics)|field (in the sense of physics)]] which is locally represented by a [[differential 1-form]] (the ``[[gauge potential]]'') and whose [[field strength]] is locally a [[differential 2-form]]. For instance, in the case of the [[electromagnetic field]] this [[differential 2-form]] is the \emph{[[Faraday tensor]]}. Roughly speaking, a \emph{higher gauge field} is similarly a field which is locally represented by [[differential forms]] of higher degree. An explanation as to why an ordinary [[gauge field]] has a [[gauge potential]] given locally by a [[differential 1-form]] $A$ is that the [[trajectory]] of a [[charged particle]] is a 1-dimensional [[curve]] in [[spacetime]] $X$, its \emph{[[worldline]]}, hence a [[smooth function]] $\gamma \colon \Sigma_1 \to X$, and the canonical way to produce an [[action functional]] on the [[mapping space]] of such curves is the [[integration of differential forms|integration of 1-forms]] over curves: \begin{displaymath} \exp(\tfrac{i}{\hbar} S_{gauge}) \;\colon\; \gamma \mapsto P \exp\left( \int_{\Sigma_1} \gamma^\ast A \right) \,. \end{displaymath} This is the \emph{[[parallel transport]]} map or the \emph{[[holonomy]]} map, if $\Sigma_1$ is a [[closed manifold|closed manifold]]. The contribution to the [[Euler-Lagrange equation]] of the particle obtained from the [[variational calculus|variation]] of this [[action functional]] is the \emph{[[Lorentz force]]} which is exerted by the [[background field|background]] [[gauge field]] on the particle. When one generalizes in this picture from 0-dimensional [[particles]] with 1-dimensional [[worldlines]] to $p$-dimensional particles (often called ``[[p-branes]]'') with $(p+1)$-dimensional [[worldvolumes]] $\gamma_{p+1} \colon \Sigma_{p+1} \to X$, then one needs, locally, a [[differential n-form|differential (p+1)-form]] $A_{p+1}$ on [[spacetime]] $X$ \begin{displaymath} \exp(\tfrac{i}{\hbar} S_{higher\,gauge}) \;\colon\; \gamma \mapsto P \exp\left( \int_{\Sigma_{p+1}} \gamma_{p+1}^\ast A_{p+1} \right) \,. \end{displaymath} The [[field strength]] or \emph{[[flux]]} of such a higher gauge field is, accordingly, locally the $(p+2)$-form $F_{p+2}$. The archetypical example of such a higher gauge field is the (hypothetical) \emph{[[Kalb-Ramond field]]} or \emph{[[B-field]]} (a precursor of the [[axion]] field under [[KK-compactification]]) to which the charged 1-brane, the ``[[string]]'', couples. This is locally a [[differential 2-form]] $B_2$, and the gauge-coupling term in the [[action functional]] for the string is accordingly, locally, of the form \begin{displaymath} \exp(\tfrac{i}{\hbar} S_{stringy\,gauge}) \;\colon\; \gamma \mapsto P \exp\left( \int_{\Sigma_{2}} \gamma_2^\ast B_2 \right) \,. \end{displaymath} This continues: next one may consider ``2-branes'', i.e. \emph{[[membranes]]}, and these will couple to a 3-form gauge field. For instance, the membrane which gives the name to \emph{[[M-theory]]} (the [[M2-brane]]) couples to a 3-form field called the \emph{[[supergravity C-field]]}. But there is an important further aspect to higher gauge fields which makes this simple picture of higher degree differential forms drastically more rich: Where an ordinary [[gauge field]] has [[gauge transformations]] $A_1 \mapsto A'_1$ given locally by smooth functions (0-forms) $\lambda_0$ via the [[de Rham differential]] $d_{dR}$ \begin{displaymath} A'_1 = A_1 + d_{dR} \lambda_0 \end{displaymath} so a higher gauge field has [[higher gauge transformations]] given locally by $p$-forms $\lambda_p$: \begin{displaymath} A'_{p+1} = A_{p+1} + d_{dR} \lambda_{p} \,. \end{displaymath} But for $p \geq 0$ then a crucial new effect appears: these gauge transformations, being higher differential forms themselves, have ``[[higher gauge transformation|gauge-of-gauge transformations]]'' between them, given by lower degree forms. This phenomenon implies that higher gauge fields have a rich \emph{global} (``topological'') structure, witnessed by the higher analog of their [[instanton sectors]]. Namely, while a higher gauge field to which a [[p-brane]] may couple is \emph{locally} given by a $(p+1)$-form $A_{p+1}$, as one moves across [[coordinate charts]] this form gauge transforms by a $p$-form, which then itself, as one passes along two charts, transforms by a $(p-1)$-form, and so on. The global structure for higher gauge fields obtained by carrying out this globalization via [[higher gauge transformations]] is the higher analog of that of a [[fiber bundle]] with [[connection on a bundle]] in [[higher differential geometry]]. This is sometimes known as a \emph{[[gerbe]]} or, more generally, a \emph{[[principal infinity-bundle]]}. In fact the situation that there is just one [[gauge potential]] of degree $(p+1)$ with [[field strength]] of degree $(p+2)$ is just the simplest case, the ``ordinary'' case. More abstractly one says that such higher gauge fields are [[cocycles]] in \emph{[[ordinary differential cohomology]]}. More generally it may happen in [[higher gauge theory]] that the gauge potential is a [[formal linear combination]] of differential forms in various degrees. The canonical example of this phenomenon is the [[RR-field]] in [[string theory]]. This has, locally, a gauge potential which is a differential form in every even degree, or every odd degree. If one is careful about the [[higher gauge transformations]] in this situation to find the correct global structure (the ``[[instanton sector]]'') of the higher gauge field, then one finds that this now is a [[cocycle]] in a [[differential cohomology|differential]] \emph{[[generalized (Eilenberg-Steenrod) cohomology|generalized cohomology]]}, namely, in what is called [[differential K-theory|differential]] [[topological K-theory]]. This may be understood as a higher and generalized form of the famous [[Dirac charge quantization]] condition for the [[electromagnetic field]], see \hyperlink{Freed00}{Freed 00}. A lot of the fine detail of the [[anomaly cancellation]] in [[type II string theory]] depends on being careful about the global nature of this [[K-theory|K-theoretic]] higher gauge [[RR-field]] (\hyperlink{DistlerFreedMoore09}{Distler-Freed-Moore 09}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Kalb-Ramond field]] \item [[RR-field]] \item [[supergravity C-field]] \item [[string field theory|string field]] \item [[AKSZ sigma-model]] \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Wilson surface]] \item [[local prequantum field theory]] \item [[higher category theory and physics]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Introduction and exposition includes \begin{itemize}% \item [[John Baez]], [[John Huerta]], \emph{An invitation to higher gauge theory}, General Relativity and Gravitation 43 (2011), 2335-2392 (\href{https://arxiv.org/abs/1003.4485}{arXiv:1003.4485}) \item PhysicsForums-Insights \emph{\href{https://www.physicsforums.com/insights/higher-category-theory-physics/}{Why higher category theory in physics?}} \item \emph{[[geometry of physics]]} \item \emph{[[twisted smooth cohomology in string theory]]} \item \emph{\href{https://www.physicsforums.com/insights/examples-prequantum-field-theories-ii-higher-gauge-fields/}{Examples of prequantum field theories II: Higher gauge fields}} \end{itemize} For technical introduction to the [[RR-field]] as a higher gauge field see \begin{itemize}% \item [[Daniel Freed]], \emph{[[Dirac charge quantization and generalized differential cohomology]]}, Surveys in Differential Geometry, Int. Press, Somerville, MA, 2000, pp. 129--194 (\href{http://arxiv.org/abs/hep-th/0011220}{arxiv:hep-th/0011220}) \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Pr\'e{}cis} in: [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics, AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv:0906.0795}, \href{http://www.ma.utexas.edu/users/dafr/bilbao.pdf}{slides}) \end{itemize} Discussion of higher gauge theory for [[Green-Schwarz mechanisms]]: \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{Twisted differential String and Fivebrane structures}, Commun. Math. Phys. 315 (2012), 169-213 (\href{https://arxiv.org/abs/0910.4001}{arXiv:0910.4001}) \item [[Clay Cordova]], [[Thomas Dumitrescu]], [[Kenneth Intriligator]], \emph{Exploring 2-Group Global Symmetries} (\href{https://arxiv.org/abs/1802.04790}{arXiv:1802.04790}) \item [[Francesco Benini]], [[Clay Cordova]], [[Po-Shen Hsin]], \emph{On 2-Group Global Symmetries and Their Anomalies}, (\href{https://arxiv.org/abs/1803.09336}{arXiv:1803.09336}) \end{itemize} For foundations of higher [[prequantum field theory]] see \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantum theory]]} \end{itemize} For foundations of higher gauge theory formalized in [[homotopy type theory]] see \begin{itemize}% \item [[Urs Schreiber]], [[Mike Shulman]], \emph{[[schreiber:Quantum gauge field theory in Cohesive homotopy type theory]]} \end{itemize} For higher gauge theory in [[condensed matter physics]] see \begin{itemize}% \item Chenchang Zhu, Tian Lan, Xiao-Gang Wen, \emph{Topological non-linear σ-model, higher gauge theory, and a realization of all 3+1D topological orders for boson systems}, (\href{https://arxiv.org/abs/1808.09394}{arXiv:1808.09394}) \item J.P. Ang, Abhishodh Prakash, \emph{Higher categorical groups and the classification of topological defects and textures}, (\href{https://arxiv.org/abs/1810.12965}{arXiv:1810.12965}) \end{itemize} [[!redirects higher gauge fields]] [[!redirects higher gauge theory]] [[!redirects higher gauge theories]] [[!redirects higher gauge symmetry]] [[!redirects higher gauge symmetries]] \end{document}