\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher generation by subgroups} \hypertarget{higher_generation_by_subgroups}{}\section*{{Higher generation by subgroups}}\label{higher_generation_by_subgroups} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_nerve_of_a_family_of_subgroups}{The nerve of a family of subgroups}\dotfill \pageref*{the_nerve_of_a_family_of_subgroups} \linebreak \noindent\hyperlink{generating_families}{$n$-generating families}\dotfill \pageref*{generating_families} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} (This is partially an account of the paper by Abels and Holz (1993) listed in the references below. It is augmented with some simple examples and discussion.) For a [[group]] $G$ and a family, $\mathcal{H}$, of [[subgroups]] of $G$, consider the [[nerve]] of the covering of the set of elements of $G$ by the [[cosets]] $H g$, for $H\in \mathcal{H}$. Although this is a ech nerve (and thus we have an established notation for nerves as in [[Čech method]]), we will denote it $N(\mathfrak{H})$ as in the source. \begin{itemize}% \item The group $G$ is generated by the union of the subgroups $H$ in $\mathcal{H}$ if and only if $N(\mathfrak{H})$ is connected. \item The group $G$ is the coproduct of the subgroups, amalgamated along their intersections, if and only if $N(\mathfrak{H})$ is simply connected. \end{itemize} The point of the article is to explore the consequences of the higher connectivity of $N(\mathfrak{H})$, corresponding to `higher generation by the subgroups', but, from the nPOV, perhaps the real questions are to ask in what way does the homotopy type of $N(\mathfrak{H})$ influence the properties of $G$. The techniques used include the bar resolution construction and homotopy colimits. There are applications to Tits systems and to [[buildings]]. \hypertarget{the_nerve_of_a_family_of_subgroups}{}\subsection*{{The nerve of a family of subgroups}}\label{the_nerve_of_a_family_of_subgroups} We start with a group, $G$, and a family, $\mathcal{H} = \{H_i\mid i\in I\}$ of subgroups of $G$. Each subgroup, $H$, determines a family of right cosets, $H_g$, which cover the \emph{set}, $G$. Of course, these partition $G$, so there are no non-trivial intersections between them. If we use \emph{all} the right cosets, $H_ig$, for \emph{all} the $H_i$ in $\mathcal{H}$, then, of course, we expect to get non-trivial intersections. Let $\mathfrak{H} = \coprod_{i\in I}H_i\backslash G= \{ H_i g\mid H_i\in \mathcal{H}\},$ where the $g$ is more as an indicator of right cosets than strictly speaking an index. This is the family of all right cosets of subgroups in $\mathcal{H}$. This covers $G$ and we write $N(\mathfrak{H})$ for the corresponding simplicial complex, which is the \emph{nerve} of this covering. More formally: \begin{udefn} Let $G$ be a group and $\mathcal{H}$ a family of subgroups of $G$. Let $\mathfrak{H}$ denote the corresponding covering family of right cosets, $H_ig$, $H_i \in \mathcal{H}$. (We will write $\mathfrak{H} = \mathfrak{H}(G,\mathcal{H})$ or even $\mathfrak{H} = (G,\mathcal{H})$, as a shorthand as well.) The \emph{nerve} of $\mathfrak{H}$ is the [[simplicial complex]], $N(\mathfrak{H})$, whose vertices are the cosets, $H_ig$, $i \in I$, and where a non-empty finite family, $\{H_ig_i\}_{i\in J}$, is a simplex if it has non-empty intersection. \end{udefn} \begin{uexample} \begin{enumerate}% \item If $\mathcal{H}$ consists just of one subgroup, $H$, then $\mathfrak{H}$ is just the set of cosets, $H\backslash G$ and $N(\mathfrak{H})$ is 0-dimensional, consisting just of 0-simplices / vertices. \item If $\mathcal{H} = \{H_1,H_2\}$, (and $H_1$ and $H_2$ are not equal!), then any right $H_1$ coset, $H_1g$, will intersect some of the right $H_2$-cosets, for instance, $H_1g\cap H_2g$ always contains $g$. The nerve, $N(\mathfrak{H})$, is a bipartite graph, considered as a simplicial complex. (The number of edges will depend on the sizes of $H_1$, $H_2$ and $H_1\cap H_2$, etc.) It is just a graphical way of illustrating the intersections of the cosets, a sort of intersection diagram. \end{enumerate} As a specific very simple example, consider: \begin{itemize}% \item $S_3 \equiv ( a,b : a^3=b^2=(ab)^2=1)$, (so $a$ denotes, say, the 3-cycle $(1 2 3)$ and $b$, a transposition $(1 2)$).\begin{itemize}% \item Take $H_1 = \langle a \rangle = \{1, (1 2 3), (1 3 2)\}$, yielding two cosets $H_1$ and $H_1b$. \item Similarly take $H_2 = \langle b\rangle = \{1, (1 2)\}$ giving cosets $H_2$, $H_2a$ and $H_2a^2$. \end{itemize} \end{itemize} The covering of $S_3$ is then $\mathfrak{H} = \{H_1,H_1b,H_2,H_2a,H_2a^2\}$, and the nerve is a complete [[bipartite graph]] on $2+3$-vertices. \end{uexample} \hypertarget{generating_families}{}\subsection*{{$n$-generating families}}\label{generating_families} \begin{udefn} A family, $\mathcal{H}$, of subgroups of $G$ is called \textbf{$n$-generating} if the nerve, $N(\mathfrak{H})$, of the corresponding coset covering is [[n-connected space|(n-1)-connected]], i.e., $\pi_i N(\mathfrak{H}) = 0$ for $i\lt n$. \end{udefn} Rephrasing and extending comments made earlier, we have \begin{uproposition} There are isomorphisms: (a) $\pi_0N(\mathfrak{H}) \cong G/\langle\bigcup H_j\rangle;$ (b) $\pi_1N(\mathfrak{H}) \cong Ker(\underset{\cap}{\sqcup} \mathcal{H}\to G).$ \end{uproposition} \begin{uexample} \begin{enumerate}% \item Keeping in the case where $\mathcal{H} = \{H_1,H_2\}$, so two subgroups of $G$ then we have that $\underset{\cap}{\sqcup} \mathcal{H}\to G$ is an isomorphism if and only if $N( \mathfrak{H})$ is a [[tree]]. This gives one of the basic types of a [[graph of groups]]. In more generality, if $\mathcal{H} = \{H_1,\ldots ,H_n\}$ then there is a [[complex of groups]] associated with $N( \mathfrak{H})$. \item A more complex family of examples of the above situation occurs in algebraic K-theory. This has the general linear group, $G\ell _n(R)$, of invertible $n\times n$ matrices together with a family of subgroups corresponding to lower triangular matrices, \ldots{}. but with some subtleties involved. \begin{itemize}% \item Let $R$ be an associative ring, and now let $\sigma$ be a partial order on $\{1,\ldots,n\}$. If $i$ is less that $j$ in the partial order $\sigma$, it is convenient to write $i\stackrel{\sigma}{\lt} j$. (Note that this means that some of the elements may only be related to themselves and hence are really not playing a role in such a $\sigma$.) We will write $PO(n)$ for the set of partial orders of $\{1,\ldots,n\}$. \item We say an $n\times n$ matrix, $A = (a_{ij})$ is \emph{$\sigma$-triangular} if, when $i\stackrel{\sigma}{\leq} j$ is false, $a_{ij}=0$, and all diagonal entries, $a_{ii}$ are $1$. \item We let $T_n^\sigma(R)$ be the subgroup of $G\ell_n(R)$ formed by the $\sigma$-triangular matrices and then look at all such subgroups for all $n$, considering the stable general linear group $G\ell(R)$ as the colimit of the nested sequence of all the $G\ell_n(R)$, take $G = G\ell(R)$. Considering the family, $\mathcal{H}$, of all the $T_n^\sigma(R)$, form the corresponding nerve, $N(\mathfrak{H})$. This space has the same homotopy type as the Volodin model for [[algebraic K-theory]], since it is the ech nerve of the covering $\mathfrak{H}$, whilst the Vietoris nerve of that covering is the [[Volodin model]]. \end{itemize} \end{enumerate} \end{uexample} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[H. Abels]] and S. Holz, \emph{Higher generation by subgroups}, J. Alg, 160, (1993), 311--341. \end{itemize} \end{document}