\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher geometric quantization} \begin{quote}% under construction, for a more coherent account see (\hyperlink{FiorenzaSchreiber}{hpqg}). \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometric_quantization}{}\paragraph*{{Geometric quantization}}\label{geometric_quantization} [[!include geometric quantization - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ordinary_symplectic_manifolds}{Ordinary symplectic manifolds}\dotfill \pageref*{ordinary_symplectic_manifolds} \linebreak \noindent\hyperlink{of_nonintegral_2forms}{Of non-integral 2-forms}\dotfill \pageref*{of_nonintegral_2forms} \linebreak \noindent\hyperlink{of_2plectic_groupoids}{Of 2-plectic $\infty$-groupoids}\dotfill \pageref*{of_2plectic_groupoids} \linebreak \noindent\hyperlink{in_codimension_2}{In codimension 2}\dotfill \pageref*{in_codimension_2} \linebreak \noindent\hyperlink{in_codimension_1}{In codimension 1}\dotfill \pageref*{in_codimension_1} \linebreak \noindent\hyperlink{chernsimons_theory}{$\infty$-Chern-Simons theory}\dotfill \pageref*{chernsimons_theory} \linebreak \noindent\hyperlink{extended__abelian_chernsimons_theory}{Extended $(4k+3)d$ abelian Chern-Simons theory}\dotfill \pageref*{extended__abelian_chernsimons_theory} \linebreak \noindent\hyperlink{extended_3d_chernsimons_theory}{Extended 3d $\mathrm{Spin}$-Chern-Simons theory}\dotfill \pageref*{extended_3d_chernsimons_theory} \linebreak \noindent\hyperlink{extended_3d_chernsimons_theory_2}{Extended 3d $G \times G$-Chern-Simons theory}\dotfill \pageref*{extended_3d_chernsimons_theory_2} \linebreak \noindent\hyperlink{extended_7d_chernsimons_theory}{Extended 7d $\mathrm{String}$-Chern-Simons theory}\dotfill \pageref*{extended_7d_chernsimons_theory} \linebreak \noindent\hyperlink{_wesszuminowitten_theory}{$\infty$ Wess-Zumino-Witten theory}\dotfill \pageref*{_wesszuminowitten_theory} \linebreak \noindent\hyperlink{ordinary_wzw_model}{Ordinary $G$-WZW model}\dotfill \pageref*{ordinary_wzw_model} \linebreak \noindent\hyperlink{wzw_model}{$String$-WZW model}\dotfill \pageref*{wzw_model} \linebreak \noindent\hyperlink{wzw_model_2}{$Fivebrane$-WZW model}\dotfill \pageref*{wzw_model_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} Higher geometric quantization is meant to complete this table: \begin{tabular}{l|l|l} [[classical mechanics]]&--[[quantization]]$\to$&[[quantum mechanics]]\\ \hline [[symplectic geometry]]&--[[geometric quantization]]$\to$&[[quantum field theory]]\\ [[higher symplectic geometry]]&--higher geometric quantization$\to$&[[extended quantum field theory]]\\ \end{tabular} Being a concept in [[higher geometry]], higher geometric quantization is formulated naturally in [[(∞,1)-topos theory]]. More precisely, since it involves not just \emph{[[cohomology]]} but \emph{[[differential cohomology]]}, it is formulated in \emph{[[cohesive (∞,1)-topos|cohesive (∞,1)-topos theory]]} ([[cohesive homotopy type theory]]). In this context, write $\mathbf{B}^n \mathbb{G}_{conn} \in \mathbf{H}$ for the cohesive [[moduli ∞-stack]] of [[circle n-bundles with connection]], in the ambient [[cohesive (∞,1)-topos]] $\mathbf{H}$. Then for $X \in \mathbf{H}$ any object to be thought of as the [[moduli ∞-stack]] of fields or as the [[target space]] for a [[sigma-model]], a morphism \begin{displaymath} \mathbf{c}_{conn} : X \to \mathbf{B}^n \mathbb{G}_{conn} \end{displaymath} modulates a [[circle n-bundle with connection]] on $X$. We regard this as a \emph{extended [[action functional]]} in that for $\Sigma_{k} \in \mathbf{H}$ of [[cohomological dimension]] $k \leq n$ and sufficiently compact so that [[fiber integration in ordinary differential cohomology]] $\exp(2 \pi i \int_{\Sigma}_k(-))$ applies, the [[transgression]] of $\mathbf{c}_{conn}$ to low [[codimension]] reproduces the traditional ingredients \begin{tabular}{l|l|l} $k =$&[[transgression]] of $\mathbf{c}_{conn}$ to $[\Sigma_{n-1},X]$&meaning in [[geometric quantization]]\\ \hline $n$&$\exp(2 \pi i S(-)) : [\Sigma_n, X] \stackrel{[\Sigma_n, \mathbf{c}_{conn}]}{\to} [\Sigma_n, \mathbf{B}^n \mathbb{G}_{conn}] \stackrel{\exp(2 \pi i \int_{\Sigma_n}(-))}{\to} \mathbb{G}$&[[action functional]]\\ $n-1$&$\exp(2 \pi i S(-)) : [\Sigma_{n-1}, X] \stackrel{[\Sigma_{n-1}, \mathbf{c}_{conn}]}{\to} [\Sigma_{n-1}, \mathbf{B}^n \mathbb{G}_{conn}] \stackrel{\exp(2 \pi i \int_{\Sigma_{n-1}}(-))}{\to} \mathbf{B}\mathbb{G}_{conn} \,$&ordinary (off-shell) [[prequantum circle bundle]]\\ \end{tabular} The idea is to consider the higher geometric quantization not just of the low codimension transgressions, but of all transgressions of $\mathbf{c}_{conn}$. The basic constructions that higher geometric quantization is concerned with are indicated in the following table. All of them have also a fundamental interpretation in [[twisted cohomology|twisted]] [[cohomology]] (independent of any interpretation in the context of [[quantization]]) this is indicated in the right column of the table: \newline | [[Planck's constant]] $\hbar$ | $\tfrac{1}{\hbar}\mathbf{c}_{conn} : X \to \mathbf{B}^n \mathbb{G}_{conn}$ | divisibility of twisting class | | [[quantomorphism group]] $\superset$ [[Heisenberg group]] | $\mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn}) = \left\{ \itexarray{ X &&\stackrel{\simeq}{\to}&& X \\ & {}_{\mathllap{\mathbf{c}_{conn}}}\searrow &\swArrow_\simeq& \swarrow_{\mathrlap{\mathbf{c}_{conn}}} \\ && \mathbf{B}^n \mathbb{G}_{conn} } \right\}$ | twist [[automorphism ∞-group]] | | [[Hamiltonian]] [[quantum operator (in geometric quantization)|quantum observables]] with [[Poisson bracket]] | $Lie(\mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn}))$ | [[infinitesimal cohesion|infinitesimal]] twist automorphisms | | [[Hamiltonian actions]] of a [[smooth ∞-group]] $G$ / dual [[moment maps]]| $\mu : \mathbf{B}G \to \mathbf{B}\mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn})$ | $G$-[[∞-action]] on the twisting | | [[gauge reduction]] | $\mathbf{c}_{conn}//G \,:\, X//G \to \mathbf{B}^n \mathbb{G}_{conn}$ | $G$-[[∞-quotient]] of the twisting | | [[Hamiltonian symplectomorphisms]] | [[∞-image]] of $\mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn}) \to \mathbf{Aut}_{/\Omega^{n+1}_{cl}(-,\mathbb{G})}(\omega)$ | twists in de Rham cohomology that lift to differential cohomology | | [[∞-representation]] of [[n-group]] $\mathbf{B}^{n-1}\mathbb{G}$ on $V_n$| $\itexarray{ V_n &\to& V_n//\mathbf{B}^{n-1}\mathbb{G} \\ && \downarrow^{\mathbf{p}} \\ && \mathbf{B}^n \mathbb{G} }$ | [[local coefficient bundle]] | |[[prequantum space of states]] | $\mathbf{\Gamma}_X(E) := [\mathbf{c},\mathbf{p}]_{/\mathbf{B}^n \mathbb{G}} = \left\{ \itexarray{ X &&\stackrel{\sigma}{\to}&& V//\mathbf{B}^{n-1}\mathbb{G} \\ & {}_{\mathllap{\mathbf{c}}}\searrow &\swArrow_{\simeq}& \swarrow_{\mathrlap{\mathbf{p}}} \\ && \mathbf{B}^n \mathbb{G} } \right\}$ | [[cocycles]] in $[\mathbf{c}]$-[[twisted cohomology|twisted V-cohomology]] | | [[prequantum operator]] | $\widehat{(-)} : \mathbf{\Gamma}_X(E) \times \mathbf{Aut}_{/\mathbf{B}^n \mathbb{G}_{conn}}(\mathbf{c}_{conn}) \to \mathbf{\Gamma}_X(E)$ | [[∞-action]] of twist automorphisms on twisted cocycles | | [[trace]] to higher [[dimension]] | $\itexarray{ [S^1, V_n//\mathbf{B}^{n-1}\mathbb{G}_{conn}] &\stackrel{tr\,hol_{S^1}}{\to}& V_{n-1}//\mathbf{B}^{n-2}\mathbb{G}_{conn} \\ \downarrow^{\mathrlap{\mathbf{p}^{V_n}_{conn}}} && \downarrow^{\mathrlap{\mathbf{p}^{V_{n-1}}_{conn}}} \\ \mathbf{B}^n \mathbb{G}_{conn} &\stackrel{\exp(2 \pi i \int_{S^1}(-))}{\to}& \mathbf{B}^{n-1} \mathbb{G}_{conn} }$ | [[fiber integration in ordinary differential cohomology]] adjoined with one in nonabelian differential cohomology | \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ordinary_symplectic_manifolds}{}\subsubsection*{{Ordinary symplectic manifolds}}\label{ordinary_symplectic_manifolds} \begin{itemize}% \item [[prequantum circle bundle]] $X \to \mathbf{B} U(1)_{conn}$ \item [[local coefficient bundle]] \begin{displaymath} \itexarray{ \mathbb{C} &\to& \mathbb{C}//U(1) \\ && \downarrow \\ && \mathbf{B} U(1) } \end{displaymath} \end{itemize} \hypertarget{of_nonintegral_2forms}{}\subsubsection*{{Of non-integral 2-forms}}\label{of_nonintegral_2forms} While only integral [[presymplectic forms]] have a [[prequantization]] to a prequantum [[circle bundle with connection]], hence to a $(\mathbb{Z} \to \mathbb{R})$-[[principal 2-bundle]], a general 2-form has a higer prequantization given by a [[connection on a 2-bundle]] on a [[principal 2-bundle]] with structure-[[2-group]] that coming from the [[crossed module]] $(\Gamma \hookrightarrow \mathbb{R})$, where $\Gamma$ is the [[discrete group]] of [[periods]] of the 2-form. This is discussed further at \emph{[[prequantization of non-integral 2-forms]]}. \hypertarget{of_2plectic_groupoids}{}\subsubsection*{{Of 2-plectic $\infty$-groupoids}}\label{of_2plectic_groupoids} \hypertarget{in_codimension_2}{}\paragraph*{{In codimension 2}}\label{in_codimension_2} \begin{itemize}% \item [[prequantum circle n-bundle|prequantum circle 2-bundle]] \item [[local coefficient bundle]] \begin{displaymath} \itexarray{ \mathbf{B}U(n) &\to& \mathbf{B}PU(n) \\ && \downarrow^{\mathrlap{\mathbf{dd}_n}} \\ && \mathbf{B}^2 U(1) } \end{displaymath} \item [[space of states]]: [[twisted bundles]] \end{itemize} \hypertarget{in_codimension_1}{}\paragraph*{{In codimension 1}}\label{in_codimension_1} \textbf{Proposition} There is a lift of coefficient bundles to [[loop space]] \begin{displaymath} \itexarray{ [S^1,(\mathbf{B}U(n))//(\mathbf{B}U(1))_{conn}] &\stackrel{tr hol_{S^1}}{\to}& \mathbb{C}//U(1)_{conn} \\ \downarrow^{\mathrlap{\mathbf{p}^{\mathbf{B}U}}} && \downarrow^{\mathrlap{\mathbf{p}^{\mathbb{C}}}} \\ [S^1,\mathbf{B}^2 U(1)_{conn}] &\stackrel{\exp(2 \pi i \int_{S^1}(-))}{\to}& \mathbf{B}U(1)_{conn} } \end{displaymath} where on the left we have [[loop space objects]] formed in $\mathbf{H}$ and on the bottom we have [[fiber integration in ordinary differential cohomology]]. Forming the pasting composite with this sends 2-states and 2-operators in codimension 2 to ordinary states and operators in codimension 1. In particular it sends [[twisted bundles]] to sections of a line bundle. For $X$ a [[D-brane]] and $\mathbf{c}_{conn}$ the [[B-field]], this reproduces [[Freed-Witten anomaly cancellation]] mechanism. \hypertarget{chernsimons_theory}{}\subsubsection*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[schreiber:∞-Chern-Simons theory]] $G$ a [[smooth ∞-group]], \begin{displaymath} \mathbf{c}_{conn} : \mathbf{B}G_{conn} \to \mathbf{B}^n U(1)_{conn} \end{displaymath} a universal differential characteristic map. The following examples are of this form. \hypertarget{extended__abelian_chernsimons_theory}{}\paragraph*{{Extended $(4k+3)d$ abelian Chern-Simons theory}}\label{extended__abelian_chernsimons_theory} [[higher dimensional Chern-Simons theory]] [[prequantum circle n-bundle|prequantum circle (4k+3)-bundle]] from [[Beilinson-Deligne cup product]] \begin{displaymath} \mathbf{B}^{2k+1}U(1)_{conn} \stackrel{(-)\cup (-)}{\to} \mathbf{B}^{4k+3}U(1)_{conn} \end{displaymath} The quantomorphism $\infty$-group of this should be \begin{displaymath} \mathbb{Z}_2 \simeq Aut(U(1)) \,. \end{displaymath} For there is, up to equivalence, a unique autoequivalence \begin{displaymath} \mathbf{B}^{2k+1}U(1)_{conn} \stackrel{\simeq}{\to} \mathbf{B}^{2k+1}U(1)_{conn} \,, \end{displaymath} the one induced by the nontrivial automorphism of $U(1)$. Since the cup-product is strictly invariant under this, this extends to \begin{displaymath} \itexarray{ \mathbf{B}^{2k+1}U(1)_{conn} &&\stackrel{\simeq}{\to}&& \mathbf{B}^{2k+1}U(1)_{conn} \\ & {}_{\mathllap{(-)\cup(-)}}\searrow &\swArrow_\simeq& \swarrow_{\mathrlap{(-)\cup(-)}} \\ && \mathbf{B}^{4k+3}U(1)_\conn } \,. \end{displaymath} But for any further nontrivial such autoequivalence in the slice we would need in particular a gauge transformation parameterized by $(2k+1)$-forms over test manifolds from $C \wedge d C$ to itself. But the only closed $2k$-forms that we can produce naturally from $C$ are multiples of $C \wedge C$. But these all vanish since $C$ is of odd degree $2k+1$. For $k = 1$ the total space of the [[prequantum circle n-bundle|prequantum circle 3-bundle]] of $U(1)$-Chern-Simons theory over the point is the [[smooth infinity-groupoid|smooth]] [[moduli infinity-stack|moduli 2-stack]] of [[T-Duality and Differential K-Theory|differential T-duality structures]]. \hypertarget{extended_3d_chernsimons_theory}{}\paragraph*{{Extended 3d $\mathrm{Spin}$-Chern-Simons theory}}\label{extended_3d_chernsimons_theory} \begin{itemize}% \item [[prequantum circle n-bundle|prequantum circle 3-bundle]]: [[differential string structure|differential first fractional Pontryagin class]] $\tfrac{1}{2}\hat \mathbf{p}_1 : \mathbf{B}Spin_{conn} \to \mathbf{B}^3 U(1)_{conn}$ \end{itemize} So [[Planck's constant]] here is $\hbar = 2$ (relative to the naive multiple). The total space of the prequantum 3-bundle is \begin{displaymath} \itexarray{ \mathbf{B}String_{conn'} &\to& \Omega^{1 \leq \bullet \leq 3} &\to& * \\ \downarrow && \downarrow && \downarrow \\ \mathbf{B}Spin_{conn} &\stackrel{\tfrac{1}{2}\hat \mathbf{p}_1}{\to}& \mathbf{B}^3 U(1)_{conn} &\to& \mathbf{B}^3 U(1) } \end{displaymath} as it appears in [[schreiber:The moduli 3-stack of the C-field]]. But the quantomorphism group of this will be small, as the [[Chern-Simons form]] is far from being gauge invariant. See the discussion at \emph{\href{Chern-Simons%20theory#GeometricQuantHigher}{Chern-Simons theory -- Geometric quantization -- In higher codimension}}. \hypertarget{extended_3d_chernsimons_theory_2}{}\paragraph*{{Extended 3d $G \times G$-Chern-Simons theory}}\label{extended_3d_chernsimons_theory_2} However, when we consider $G \times G$ CS theory given by \begin{displaymath} \mathbf{B}(G \times G)_{conn} \stackrel{\mathbf{c}^1_{conn}- \mathbf{c}^2_{conn}}{\to} \mathbf{B}^3 U(1)_{conn} \end{displaymath} then diagonal gauge transformations $\mathbf{B}(G \times G)_{conn} \to \mathbf{B}(G \times G)_{conn}$ have interesting extensions to quantomorphisms, because for $g : U \to G$ the given gauge transformation at stage of definition $U$, the Chern-Simons form transforms by an exact term \begin{displaymath} CS(A_1^g,A_2^g) = CS(A_1,A_2) + d \langle A_1 - A_2, g^* \theta\rangle \,. \end{displaymath} \hypertarget{extended_7d_chernsimons_theory}{}\paragraph*{{Extended 7d $\mathrm{String}$-Chern-Simons theory}}\label{extended_7d_chernsimons_theory} \begin{itemize}% \item [[prequantum circle n-bundle|prequantum circle 7-bundle]]: [[differential fivebrane structure|differential second fractional Pontryagin class]] $\tfrac{1}{6}\hat \mathbf{p}_2 : \mathbf{B}String_{conn} \to \mathbf{B}^z U(1)_{conn}$ \end{itemize} So [[Planck's constant]] here is $\hbar = 6$ (relative to the naive multiple). The total space of the prequantum 7-bundle is \begin{displaymath} \itexarray{ \mathbf{B}Fivebrane_{conn'} &\to& \Omega^{1 \leq \bullet \leq 7} &\to& * \\ \downarrow && \downarrow && \downarrow \\ \mathbf{B}String_{conn} &\stackrel{\tfrac{1}{6}\hat \mathbf{p}_2}{\to}& \mathbf{B}^7 U(1)_{conn} &\to& \mathbf{B}^7 U(1) } \end{displaymath} \hypertarget{_wesszuminowitten_theory}{}\subsubsection*{{$\infty$ Wess-Zumino-Witten theory}}\label{_wesszuminowitten_theory} \begin{itemize}% \item [[schreiber:∞-Wess-Zumino-Witten theory]] \end{itemize} Differentially twisted looping of $\infty$-Chern-Simons theory \begin{displaymath} \Omega \mathbf{c} : G \to \mathbf{B}^{n-1}\mathbb{G} \end{displaymath} \hypertarget{ordinary_wzw_model}{}\paragraph*{{Ordinary $G$-WZW model}}\label{ordinary_wzw_model} \begin{itemize}% \item [[WZW model]] \end{itemize} \begin{displaymath} \tilde\Omega \tfrac{1}{2}\mathbf{p}_1 : G \to \mathbf{B}^2 U(1)_{conn} \end{displaymath} studied in (\hyperlink{RogersPhD}{Rogers PhD, section 4.2}). \hypertarget{wzw_model}{}\paragraph*{{$String$-WZW model}}\label{wzw_model} (\ldots{}) \hypertarget{wzw_model_2}{}\paragraph*{{$Fivebrane$-WZW model}}\label{wzw_model_2} (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include Isbell duality - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} 2-geometric quantization over [[smooth manifolds]] is discussed in section 6 and section 7 of \begin{itemize}% \item [[Chris Rogers]], \emph{Higher symplectic geometry} PhD thesis (2011) (\href{http://arxiv.org/abs/1106.4068}{arXiv:1106.4068}) \end{itemize} with further indications in \begin{itemize}% \item [[Chris Rogers]], \emph{Higher geometric quantization}, at \emph{Higher Structures 2011} ([[RogersGottingen11.pdf:file]]) \end{itemize} The special case of geometric quantization over infinitesimal [[action groupoids]] can be described in terms of [[BRST complexes]]. For references on this see \emph{\href{http://ncatlab.org/nlab/show/geometric+quantization#ReferencesBRST}{Geometric quantization -- References -- Geometric BRST quantization}}. Higher geometric quantization in a [[cohesive (∞,1)-topos]] over [[smooth ∞-groupoids]] is discussed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Chris Rogers]], \emph{[[schreiber:infinity-geometric prequantization]]} \end{itemize} and the examples of higher Chern-Simons theories in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]] \emph{[[schreiber:Higher geometric prequantum theory]]} \end{itemize} [[!redirects higher geometric prequantization]] [[!redirects extended geometric quantization]] \end{document}