\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \textbf{higher geometry} $\leftarrow$ [[Isbell duality]] $\to$ [[higher algebra]] \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Formalizations}{Formalizations}\dotfill \pageref*{Formalizations} \linebreak \noindent\hyperlink{GrosHigherToposes}{Gros (∞,1)-toposes}\dotfill \pageref*{GrosHigherToposes} \linebreak \noindent\hyperlink{PetitHigherToposes}{Petit (∞,1)-toposes}\dotfill \pageref*{PetitHigherToposes} \linebreak \noindent\hyperlink{relation_between_these_approaches}{Relation between these approaches}\dotfill \pageref*{relation_between_these_approaches} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{list_of_examples}{List of examples}\dotfill \pageref*{list_of_examples} \linebreak \noindent\hyperlink{NoncommutativeAlgebraicGeometry}{Noncommutative algebraic geometry}\dotfill \pageref*{NoncommutativeAlgebraicGeometry} \linebreak \noindent\hyperlink{ConnesStyleNoncommutativeGeometry}{Connes-style noncommutative geometry}\dotfill \pageref*{ConnesStyleNoncommutativeGeometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{Lurie}{References}\dotfill \pageref*{Lurie} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Higher geometry} or \emph{homotopical geometry} is the study of concepts of [[space]] and [[geometry]] in the context of [[higher category theory]] and [[homotopy theory]]. \begin{uremark} higher geometry = [[geometry]] + [[homotopy theory]]/[[higher category theory]] \end{uremark} Higher geometry subsumes notably the theory of [[orbifolds]] and [[geometric stacks]], as well as the theory of more general [[stacks]] such as [[moduli stacks]], and generalizes all this to [[∞-stacks]] and [[derived stacks]]. This way higher geometry includes what is called \emph{[[derived geometry]]} and it subsumes at least parts of (derived) [[noncommutative geometry]]. Many other phenomena are naturally part of higher geometry, see the list of \hyperlink{Examples}{Examples} below. In any given instance of higher geometry, one starts with a notion of ``local models'' for the geometry. An \emph{affine space} will then be a formal dual of such a local model, and a general [[space]] will be formed by ``gluing'' these affine spaces in some appropriate way. There are two ways of formalizing this idea, coming from [[Alexander Grothendieck]]`s two definitions of [[scheme]] in [[algebraic geometry]] via [[locally ringed spaces]] and [[functors of points]]. Both are built on [[(∞,1)-topos theory]]: in one direction, a [[petit topos|petit]] [[(∞,1)-topos]] (with some additional [[structured (∞,1)-topos|structure]]) encodes a [[space]] itself; in another direction, a [[space]] is an object of a [[gros topos|gros]] [[(∞,1)-topos]] of [[∞-stacks]] on some [[(∞,1)-site]]. We discuss these axiomatizations below in \emph{\hyperlink{Formalizations}{Formalization}}. These approaches do not apply to [[noncommutative algebraic geometry]], which requires a different approach to deal with a more complicated notion of gluing; we discuss this below in \emph{\hyperlink{NoncommutativeAlgebraicGeometry}{Noncommutative algebraic geometry}}. \hypertarget{Formalizations}{}\subsection*{{Formalizations}}\label{Formalizations} We discuss two different (but closely related) formalizations of these ideas. In \begin{itemize}% \item \emph{\hyperlink{GrosHigherToposes}{Gros (∞,1)-topos}} \end{itemize} we discuss the approach of considering one big [[(∞,1)-topos]] $\mathbf{H}$ (with ``big''/[[gros topos|gros]] being formalized for instance by [[cohesion]]) such that (some of) its objects are to be regarded as higher geometric spaces. In \begin{itemize}% \item \emph{\hyperlink{PetitHigherToposes}{Petit (∞,1)-toposes}} \end{itemize} we discuss the approach of encoding a would-be higher geometric space $X$ by a [[structured (∞,1)-topos]] to be thought of as the [[petit topos|petit]] [[(∞,1)-topos]] of [[(∞,1)-sheaves]] $(Sh_\infty(X), \mathcal{O}_X)$ of $X$, canonically equipped with a [[structure sheaf]] $\mathcal{O}_X$. \hypertarget{GrosHigherToposes}{}\subsubsection*{{Gros (∞,1)-toposes}}\label{GrosHigherToposes} Let $\mathcal{G}$ be an [[(∞,1)-site]] whose objects are to be viewed as ``local models'' or ``test spaces'' for a geometry. Within the context of this geometry, we make the following definitions: An \textbf{affine space} is a formal dual of an object of $\mathcal{G}$, so that the (∞,1)-category of affine spaces is the [[opposite (∞,1)-category|opposite]] of $\mathcal{G}$. A \textbf{stack} is an [[∞-stack]] on $\mathcal{G}$, so that the (∞,1)-category of stacks is the [[gros topos|gros]] [[(∞,1)-sheaf (∞,1)-topos]] on $\mathcal{G}$. Finally, a \textbf{space} is a [[stack]] $X$ that has a cover by a family of affine spaces $(f_i : U_i \to X)_i$, where each $f_i$ belongs to some nice class of morphisms (e.g. [[open immersions]], [[etale morphisms]] or [[smooth morphisms]]). When the underlying (∞,1)-category of $\mathcal{G}$ is the (∞,1)-category of [[commutative algebras in a symmetric monoidal (∞,1)-category]], this is known as \emph{[[homotopical algebraic geometry]]}. When it is the (∞,1)-category of [[algebras over a Lawvere theory]], this is discussed at [[derived geometry]]. Following [[Bill Lawvere]], one may ask for a set of [[axioms]] on the [[(∞,1)-sheaf (∞,1)-topos]] $Sh_\infty(\mathcal{G})$ that ensure that it is appropriate to view [[(∞,1)-sheaves]] on $\mathcal{G}$ as generalized geometric spaces. One such set of axioms is \emph{[[cohesion]]}. \hypertarget{PetitHigherToposes}{}\subsubsection*{{Petit (∞,1)-toposes}}\label{PetitHigherToposes} As above, let $\mathcal{G}$ be an [[(∞,1)-category]] whose objects will be viewed as ``local models'' for the kind of geometry to be developed. Following [[Jacob Lurie]] (based on the theory of geometry via [[ringed toposes]] by [[Alexander Grothendieck]] and [[Monique Hakim]]), a $\mathcal{G}$-[[structured (∞,1)-topos]] is the data of an [[(∞,1)-topos]] together with a [[structure sheaf]] valued in $\mathcal{G}$. Given an appropriate choice of $\mathcal{G}$, one gets the following hierarchy of generalized spaces this way: \begin{itemize}% \item [[geometry (for structured (∞,1)-toposes)|test spaces]] $\hookrightarrow$ [[generalized scheme|spaces locally equivalent to test spaces]] $\hookrightarrow$ [[structured (∞,1)-topos|concrete spaces with structure sheaves taking values in test spaces]] $\hookrightarrow$ [[∞-stack|spaces probeable by test spaces]]. \end{itemize} technically modeled by: \begin{itemize}% \item [[geometry (for structured (∞,1)-toposes)]] $\mathcal{G}$ $\hookrightarrow$ [[generalized scheme]]s $\hookrightarrow$ formal duals to $\mathcal{G}$-[[structured (∞,1)-topos]]es $\hookrightarrow$ [[(∞,1)-topos]] of [[∞-stack]]s on $\mathcal{G}$. \end{itemize} A plethora of proposals for formalizations of higher geometry find their home in this pattern, for instance most of the concepts listed at [[generalized smooth space]]. \hypertarget{relation_between_these_approaches}{}\subsection*{{Relation between these approaches}}\label{relation_between_these_approaches} Given a gros [[cohesive (∞,1)-topos]] $\mathbf{H}$ and an object $X \in \mathbf{H}$, one may in turn assign to $X$ a petit [[structured (∞,1)-topos]] $Sh_{\mathbf{H}}(X)$ of [[internal sheaves]] over $X$. See at \emph{[[differential cohesion]]} for how this works. This connects the ``gros'' perspective back to the ``petit'' perspective. Conversely, given a [[structured (∞,1)-topos]] one may consider its associated [[functor of points]], which will be an object in the [[gros topos|gros]] [[(∞,1)-topos]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{list_of_examples}{}\subsubsection*{{List of examples}}\label{list_of_examples} \begin{itemize}% \item [[homotopical algebraic geometry]] \begin{itemize}% \item [[derived algebraic geometry]] \item [[étale (∞,1)-site]], [[dg-geometry]], [[Hochschild cohomology]] of [[dg-algebra]]s \item [[schematic homotopy type]] \end{itemize} \item [[derived noncommutative geometry]] \begin{itemize}% \item [[noncommutative geometry]] \end{itemize} \item [[higher differential geometry]] \begin{itemize}% \item [[motivation for higher differential geometry]] \item [[differential geometry]], [[differential topology]] \item [[derived smooth manifold]] \item [[smooth ∞-groupoid]], [[∞-Lie algebroid]] \end{itemize} \item [[higher symplectic geometry]] \item [[higher complex analytic geometry]] \item [[higher prequantum geometry]] \item [[higher Klein geometry]] \item [[higher Cartan geometry]] \end{itemize} \hypertarget{NoncommutativeAlgebraicGeometry}{}\subsubsection*{{Noncommutative algebraic geometry}}\label{NoncommutativeAlgebraicGeometry} The above frameworks for higher geometry are not suitable for describing [[noncommutative algebraic geometry]], because of the more complicated notions of [[localization]], gluing and [[descent]] in the latter setting. Indeed, noncommutative spaces are supposed to be obtained from affine ones (formal duals of [[associative algebras]] or [[dg-algebras]]) by gluing along \emph{[[bimodules]]}. A good setting for such gluing is that of [[pretriangulated dg-categories]] (or [[stable (∞,1)-categories]]). Thus in [[derived noncommutative algebraic geometry]], a noncommutative space is defined to be a [[stable (∞,1)-category]]. \hypertarget{ConnesStyleNoncommutativeGeometry}{}\subsubsection*{{Connes-style noncommutative geometry}}\label{ConnesStyleNoncommutativeGeometry} The process of forming [[groupoid convolution algebras]] is a [[2-functor]] from suitable [[topological stack|topological]] and [[differentiable stacks]] to [[C\emph{-algebras]] with [[Hilbert bimodules]] between them. Much of [[Connes]]-style [[noncommutative geometry]] turns out to deal with objects in the image of this functor, and to the extent that it does, Connes-style noncommutative geometry may be regarded as being a way of speaking about higher geometry, specifically the [[higher differential geometry]] of [[differentiable stacks]].} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include Isbell duality - table]] For relation to [[physics]] see \begin{itemize}% \item [[higher category theory and physics]] \item [[geometry of physics]] \end{itemize} \hypertarget{Lurie}{}\subsection*{{References}}\label{Lurie} In \begin{itemize}% \item [[Bill Lawvere]], \emph{Axiomatic cohesion} Theory and Applications of Categories, Vol. 19, No. 3, 2007, pp. 41--49. (\href{http://www.tac.mta.ca/tac/volumes/19/3/19-03.pdf}{pdf}) \end{itemize} Both approaches to higher geometry are described, in the special case of [[derived algebraic geometry]], in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Derived Algebraic Geometry]]}, Ph.D. thesis. \end{itemize} The gros topos approach is described, in the case of [[homotopical algebraic geometry]], in \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{Homotopical algebraic geometry II: geometric stacks and applications}, 2004, \href{http://arxiv.org/abs/math/0404373}{arXiv:math/0404373}. \end{itemize} A general exposition of the petit topos approach is proposed in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Structured Spaces]]} . \end{itemize} In \begin{itemize}% \item [[Bill Lawvere]], \emph{Axiomatic cohesion} Theory and Applications of Categories, Vol. 19, No. 3, 2007, pp. 41--49. (\href{http://www.tac.mta.ca/tac/volumes/19/3/19-03.pdf}{pdf}) \end{itemize} an axiomatization of generalized geometry is proposed in terms of 1-[[category theory]]. The evident generalization of this to [[(∞,1)-category theory]] provides an axiomatization for higher geometry. This is discussed at \begin{itemize}% \item [[cohesive (∞,1)-topos]]. \end{itemize} [[!redirects higher geometries]] \end{document}