\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher inductive type} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{induction}{}\paragraph*{{Induction}}\label{induction} [[!include induction - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_circle}{The circle}\dotfill \pageref*{the_circle} \linebreak \noindent\hyperlink{the_interval}{The interval}\dotfill \pageref*{the_interval} \linebreak \noindent\hyperlink{the_2sphere}{The 2-sphere}\dotfill \pageref*{the_2sphere} \linebreak \noindent\hyperlink{suspension}{Suspension}\dotfill \pageref*{suspension} \linebreak \noindent\hyperlink{MappingCylinders}{Mapping cylinders}\dotfill \pageref*{MappingCylinders} \linebreak \noindent\hyperlink{truncation}{Truncation}\dotfill \pageref*{truncation} \linebreak \noindent\hyperlink{pushouts}{Pushouts}\dotfill \pageref*{pushouts} \linebreak \noindent\hyperlink{QuotientsOfSets}{Quotients of sets}\dotfill \pageref*{QuotientsOfSets} \linebreak \noindent\hyperlink{localization}{Localization}\dotfill \pageref*{localization} \linebreak \noindent\hyperlink{spectrification}{Spectrification}\dotfill \pageref*{spectrification} \linebreak \noindent\hyperlink{semantics}{Semantics}\dotfill \pageref*{semantics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Higher inductive types} (HITs) are a generalization of [[inductive types]] which allow the constructors to produce, not just points of the type being defined, but also elements of its iterated [[identity types]]. While HITs are already useful in [[extensional type theory]], they are most useful and powerful in [[homotopy type theory]], where they allow the construction of [[cell complexes]], [[homotopy colimits]], [[n-truncated|truncations]], [[Bousfield localization of model categories|localizations]], and many other objects from classical [[homotopy theory]]. Defining what a HIT is ``in general'' is an open research problem. One mostly precise proposal may be found in (\hyperlink{ShulmanLumsdaine16}{ShulmanLumsdaine16}). A more syntactic description of a class of HITs may be found in (\hyperlink{Brunerie16}{Brunerie16}). A solution to this problem should determine how to define the concept of an [[elementary (∞,1)-topos]]. See also [[homotopytypetheory:higher inductive type]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} All higher inductive types described below are given together with some pseudo-[[Coq]] code, which would implement that HIT if Coq supported HITs natively. \hypertarget{the_circle}{}\subsubsection*{{The circle}}\label{the_circle} \begin{verbatim}Inductive circle : Type := | base : circle | loop : base == base.\end{verbatim} Using the [[univalence axiom]], one can prove that the [[loop space]] {\colorbox[rgb]{1.00,0.93,1.00}{\tt base\char32\char61\char61\char32base}} of the circle type is equivalent to the [[integers]]; see \href{http://homotopytypetheory.org/2011/04/29/a-formal-proof-that-pi1s1-is-z/}{this blog post}. \hypertarget{the_interval}{}\subsubsection*{{The interval}}\label{the_interval} The [[homotopy type]] of the [[interval]] can be encoded as \begin{verbatim}Inductive interval : Type := | zero : interval | one : interval | segment : zero == one.\end{verbatim} See [[interval type]]. The interval can be proven to be [[contractible type|contractible]]. On the other hand, if the constructors {\colorbox[rgb]{1.00,0.93,1.00}{\tt zero}} and {\colorbox[rgb]{1.00,0.93,1.00}{\tt one}} satisfy their elimination rules definitionally, then the existence of an interval type implies [[function extensionality]]; see \href{http://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/}{this blog post}. The interval can be defined as the -1-truncation of the booleans; see \href{https://groups.google.com/d/msg/homotopytypetheory/-5mLEi_qMTo/gpNUsmI-ZT4J}{here}. \hypertarget{the_2sphere}{}\subsubsection*{{The 2-sphere}}\label{the_2sphere} Similarly the [[homotopy type]] of the 2-[[dimensional]] [[sphere]] \begin{verbatim}Inductive sphere2 : Type := | base2 : sphere2 | surf2 : idpath base2 == idpath base2.\end{verbatim} \hypertarget{suspension}{}\subsubsection*{{Suspension}}\label{suspension} \begin{verbatim}Inductive susp (X : Type) : Type := | north : susp X | south : susp X | merid : X -> north == south.\end{verbatim} This is the unpointed [[suspension]]. It is also possible to define the pointed suspension. Using either one, we can define the $n$-sphere by induction on $n$, since $S^{n+1}$ is the suspension of $S^n$. \hypertarget{MappingCylinders}{}\subsubsection*{{Mapping cylinders}}\label{MappingCylinders} The construction of [[mapping cylinders]] is given by \begin{verbatim}Inductive cyl {X Y : Type} (f : X -> Y) : Y -> Type := | cyl_base : forall y:Y, cyl f y | cyl_top : forall x:X, cyl f (f x) | cyl_seg : forall x:X, cyl_top x == cyl_base (f x).\end{verbatim} Using this construction, one can define a (cofibration, trivial fibration) [[weak factorization system]] for types. \hypertarget{truncation}{}\subsubsection*{{Truncation}}\label{truncation} \begin{verbatim}Inductive is_inhab (A : Type) : Type := | inhab : A -> is_inhab A | inhab_path : forall (x y: is_inhab A), x == y.\end{verbatim} This is the [[(-1)-truncated|(-1)-truncation]] into [[h-propositions]]. One can prove that {\colorbox[rgb]{1.00,0.93,1.00}{\tt is\char95inhab\char32A}} is always a [[proposition]] (i.e. $(-1)$-truncated) and that it is the reflection of $A$ into propositions. More generally, one can construct the [[(effective epi, mono) factorization system]] by applying {\colorbox[rgb]{1.00,0.93,1.00}{\tt is\char95inhab}} fiberwise to a fibration. Similarly, we have the [[0-truncated|0-truncation]] into [[h-sets]]: \begin{verbatim}Inductive pi0 (X:Type) : Type := | cpnt : X -> pi0 X | pi0_axiomK : forall (l : Circle -> pi0 X), refl (l base) == map l loop.\end{verbatim} We can similarly define $n$-truncation for any $n$, and we should be able to define it inductively for all $n$ at once as well. See at \emph{[[n-truncation modality]]}. \hypertarget{pushouts}{}\subsubsection*{{Pushouts}}\label{pushouts} The (homotopy) [[homotopy pushout|pushout]] of $f \colon A\to B$ and $g\colon A\to C$: \begin{verbatim}Inductive hpushout {A B C : Type} (f : A -> B) (g : A -> C) : Type := | inl : B -> hpushout f g | inr : C -> hpushout f g | glue : forall (a : A), inl (f a) == inr (g a).\end{verbatim} \hypertarget{QuotientsOfSets}{}\subsubsection*{{Quotients of sets}}\label{QuotientsOfSets} The [[quotient]] of an [[hProp]]-value [[equivalence relation]], yielding an [[hSet]] (a [[0-truncated]] type): \begin{verbatim}Inductive quotient (A : Type) (R : A -> A -> hProp) : Type := | proj : A -> quotient A R | relate : forall (x y : A), R x y -> proj x == proj y | contr1 : forall (x y : quotient A R) (p q : x == y), p == q.\end{verbatim} This is already interesting in [[extensional type theory]], where [[quotient types]] are not always included. For more general homotopical quotients of ``[[internal groupoids]]'' as in the [[(∞,1)-Giraud theorem]], we first need a good definition of what such an internal groupoid is. \hypertarget{localization}{}\subsubsection*{{Localization}}\label{localization} Suppose we are given a family of [[function type|functions]]: \begin{verbatim}Hypothesis I : Type. Hypothesis S T : I -> Type. Hypothesis f : forall i, S i -> T i.\end{verbatim} A type is said to be $I$-\textbf{[[local object|local]]} if it sees each of these functions as an [[equivalence]]: \begin{verbatim}Definition is_local Z := forall i, is_equiv (fun g : T i -> Z => g o f i).\end{verbatim} The following HIT can be shown to be a [[reflection]] of all types into the local types, constructing the [[localization]] of the category of types at the given family of maps. \begin{verbatim}Inductive localize X := | to_local : X -> localize X | local_extend : forall (i:I) (h : S i -> localize X), T i -> localize X | local_extension : forall (i:I) (h : S i -> localize X) (s : S i), local_extend i h (f i s) == h s | local_unextension : forall (i:I) (g : T i -> localize X) (t : T i), local_extend i (g o f i) t == g t | local_triangle : forall (i:I) (g : T i -> localize X) (s : S i), local_unextension i g (f i s) == local_extension i (g o f i) s.\end{verbatim} The first constructor gives a map from {\colorbox[rgb]{1.00,0.93,1.00}{\tt X}} to {\colorbox[rgb]{1.00,0.93,1.00}{\tt localize\char32X}}, while the other four specify exactly that {\colorbox[rgb]{1.00,0.93,1.00}{\tt localize\char32X}} is local (by giving adjoint equivalence data to the map that we want to become an equivalence). See \href{http://homotopytypetheory.org/2011/12/06/inductive-localization/}{this blog post} for details. This construction is also already interesting in extensional type theory. \hypertarget{spectrification}{}\subsubsection*{{Spectrification}}\label{spectrification} A [[prespectrum]] is a sequence of [[pointed object|pointed types]] $X_n$ with pointed maps $X_n \to \Omega X_{n+1}$: \begin{verbatim}Definition prespectrum := {X : nat -> Type & { pt : forall n, X n & { glue : forall n, X n -> pt (S n) == pt (S n) & forall n, glue n (pt n) == idpath (pt (S n)) }}}.\end{verbatim} A prespectrum is a [[spectrum]] if each of these maps is an equivalence. \begin{verbatim}Definition is_spectrum (X : prespectrum) : Type := forall n, is_equiv (pr1 (pr2 (pr2 X)) n).\end{verbatim} In classical [[algebraic topology]], there is a \textbf{spectrification} functor which is [[left adjoint]] to the inclusion of spectra in prespectra. For instance, this is how a [[suspension spectrum]] is constructed: by spectrifying the prespectrum $X_n \coloneqq \Sigma^n A$. The following HIT should construct spectrification in [[homotopy type theory]] (though this has not yet been verified formally). (There are some abuses of notation below, which can be made precise using Coq typeclasses and implicit arguments.) \begin{verbatim}Inductive spectrify (X : prespectrum) : nat -> Type := | to_spectrify : forall n, X n -> spectrify X n | spectrify_glue : forall n, spectrify X n -> to_spectrify (S n) (pt (S n)) == to_spectrify (S n) (pt (S n)) | to_spectrify_is_prespectrum_map : forall n (x : X n), spectrify_glue n (to_spectrify n x) == loop_functor (to_spectrify (S n)) (glue n x) | spectrify_glue_retraction : forall n (p : to_spectrify (S n) (pt (S n)) == to_spectrify (S n) (pt (S n))), spectrify X n | spectrify_glue_retraction_is_retraction : forall n (sx : spectrify X n), spectrify_glue_retraction n (spectrify_glue n sx) == sx | spectrify_glue_section : forall n (p : to_spectrify (S n) (pt (S n)) == to_spectrify (S n) (pt (S n))), spectrify X n | spectrify_glue_section_is_section : forall n (p : to_spectrify (S n) (pt (S n)) == to_spectrify (S n) (pt (S n))), spectrify_glue n (spectrify_glue_section n p) == p.\end{verbatim} We can unravel this as follows, using more traditional notation. Let $L X$ denote the spectrification being constructed. The first constructor says that each $(L X)_n$ comes with a map from $X_n$, called $\ell_n$ say (denoted {\colorbox[rgb]{1.00,0.93,1.00}{\tt to\char95spectrify\char32n}} above). This induces a basepoint in each type $(L X)_n$, namely the image $\ell_n(*)$ of the basepoint of $X_n$. The many occurrences of \begin{verbatim}to_spectrify (S n) (pt (S n)) == to_spectrify (S n) (pt (S n))\end{verbatim} simply refer to the based \emph{loop space} of $\Omega_{\ell_{n+1}(*)} (L X)_{n+1}$ of $(L X)_{n+1}$ at this base point. Thus, the second constructor {\colorbox[rgb]{1.00,0.93,1.00}{\tt spectrify\char95glue}} gives the structure maps $(L X)_n \to \Omega (L X)_{n+1}$ to make $L X$ into a prespectrum. Similarly, the third constructor says that the maps $\ell_n\colon X_n \to (L X)_n$ commute with the structure maps up to a specified homotopy. Since the basepoints of the types $(L X)_n$ are induced from those of each $X_n$, this automatically implies that the maps $(L X)_n \to \Omega (L X)_{n+1}$ are pointed maps (up to a specified homotopy) and that the $\ell_n$ commute with these pointings (up to a specified homotopy). This makes $\ell$ into a map of prespectra. Finally, the fourth through seventh constructors say that $L X$ is a spectrum, by giving [[h-isomorphism]] data: a retraction and a section for each glue map $(L X)_n \to \Omega (L X)_{n+1}$. We could use adjoint equivalence data as we did for localization, but this approach avoids the presence of level-3 path constructors. (We could have used h-iso data in localization too, thereby avoiding even level-2 constructors there.) It is important, in general, to use a sort of equivalence data which forms an [[h-prop]]; otherwise we would be adding [[stuff, structure, property|structure]] rather than merely the property of such-and-such map being an equivalence. \hypertarget{semantics}{}\subsection*{{Semantics}}\label{semantics} See (\hyperlink{LumsdaineShulman17}{Lumsdaine-Shulman17}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[inductive type]], [[initial algebra of an endofunctor]] \item \textbf{higher inductive type}, [[initial algebra of a presentable ∞-monad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Expositions include \begin{itemize}% \item [[Mike Shulman]], \emph{Homotopy type theory IV} (\href{http://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html}{blog entry}) \item [[Peter LeFanu Lumsdaine]], \emph{Higher inductive types, a tour of the menageries} (\href{http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/}{blog post}) \item [[Peter LeFanu Lumsdaine]], \emph{Higher Inductive Types: The circle and friends, axiomatically} (\href{http://pages.cpsc.ucalgary.ca/~robin/FMCS/FMCS2011/Lumsdaine_slides.pdf}{pdf}) \end{itemize} Details of the semantics are in \begin{itemize}% \item [[Peter LeFanu Lumsdaine]] [[Mike Shulman]], \emph{Semantics of higher inductive types} (\href{https://arxiv.org/abs/1705.07088}{arXiv:1705.07088}, talk slides \href{http://home.sandiego.edu/~shulman/papers/cellcxs.pdf}{pdf}) \end{itemize} with precursors in \begin{itemize}% \item [[Mike Shulman]], [[Peter LeFanu Lumsdaine]], \emph{Semantics of higher inductive types}, 2012 (\href{http://uf-ias-2012.wikispaces.com/file/view/semantics.pdf/410646692/semantics.pdf}{pdf}) \item [[Mike Shulman]], [[Peter LeFanu Lumsdaine]], \emph{Semantics and syntax of higher inductive types}, 2016, (\href{http://home.sandiego.edu/~shulman/papers/stthits.pdf}{slides}) \end{itemize} Discussion of a subset of the HITs is in: \begin{itemize}% \item [[Kristina Sojakova]], \emph{Higher Inductive Types as Homotopy-Initial Algebras} \href{http://arxiv.org/abs/1402.0761}{arXiv:1402.0761} \item [[Steve Awodey]], [[Nicola Gambino]], [[Kristina Sojakova]], \emph{Homotopy-initial algebras in type theory} (\href{http://arxiv.org/abs/1504.05531}{arXiv:1504.05531}) \item [[Michael Rathjen]], \emph{\href{http://www2.macs.hw.ac.uk/~cm389/hexmaps/2014/03/epsrc-ict-50/grants/EP-K023128-1.php}{Homotopical Inductive Types}} on [[higher inductive types]] \end{itemize} Implementation in [[Agda]]/[[Coq]] is discussed in \begin{itemize}% \item [[Guillaume Brunerie]], \emph{Implementation of higher inductive types in HoTT-Agda}, 2016, \href{https://github.com/HoTT/HoTT-Agda/blob/master/core/lib/types/HIT_README.txt}{github} \item Bruno Barras, \emph{Native implementation of Higher Inductive Types (HITs) in Coq} \href{http://www.crm.cat/en/activities/documents/barras-crm-2013.pdf}{PDF} \end{itemize} [[!redirects higher inductive types]] [[!redirects HIT]] [[!redirects HITs]] \end{document}