\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher prequantum geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{geometric_quantization}{}\paragraph*{{Geometric quantization}}\label{geometric_quantization} [[!include geometric quantization - contents]] \begin{quote}% under construction \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivation_and_survey_of_results}{Motivation and survey of results}\dotfill \pageref*{motivation_and_survey_of_results} \linebreak \noindent\hyperlink{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices}{Ordinary prequantum geometry in terms of automorphisms in slices}\dotfill \pageref*{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices} \linebreak \noindent\hyperlink{TheNeedForHigherPrequantumBundles}{The need for higher prequantum bundles}\dotfill \pageref*{TheNeedForHigherPrequantumBundles} \linebreak \noindent\hyperlink{brief_recollection_higher_geometry}{Brief recollection: Higher geometry}\dotfill \pageref*{brief_recollection_higher_geometry} \linebreak \noindent\hyperlink{higher_atiyah_groupoids}{Higher Atiyah groupoids}\dotfill \pageref*{higher_atiyah_groupoids} \linebreak \noindent\hyperlink{the_central_theorem_quantomorphism_group_extensions}{The central theorem: Quantomorphism $\infty$-group extensions}\dotfill \pageref*{the_central_theorem_quantomorphism_group_extensions} \linebreak \noindent\hyperlink{examples__and__as_heisenberg_groups}{Examples: $String$ and $Fivebrane$ as Heisenberg $\infty$-groups}\dotfill \pageref*{examples__and__as_heisenberg_groups} \linebreak \noindent\hyperlink{constructions_in_higher_prequantum_geometry}{Constructions in higher prequantum geometry}\dotfill \pageref*{constructions_in_higher_prequantum_geometry} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Traditional [[prequantum geometry]] is the [[differential geometry]] of [[smooth manifolds]] which are equipped with a \emph{[[twisted cohomology|twist]]} in the form of a [[circle group]]-[[principal bundle]] and a circle-[[principal connection]]. In the context of \emph{[[geometric quantization]]} of [[symplectic manifolds]] these arise as \emph{[[prequantum bundles]]}. Equivalently, prequantum geometry is the \emph{[[contact geometry]]} of the total spaces of these bundles, equipped with their [[Ehresmann connection]] [[differential 1-form]] and thought of as \emph{[[regular contact manifolds]]}. Prequantum geometry notably studies the [[automorphisms]] of [[prequantum bundles]] covering [[diffeomorphisms]] of the base -- the \emph{[[prequantum operators]]} or \emph{[[contactomorphisms]]} -- and the [[action]] of these on the space of [[sections]] of the [[associated bundle|associated]] [[line bundle]] -- the \emph{[[prequantum states]]}. This is an intermediate step in the genuine \emph{[[geometric quantization]]} of the [[curvature]] [[differential 2-form]] of these bundles, which is obtained by ``dividing the above data in half'' ([[polarization]]), important for instance in the the \emph{[[orbit method]]}. But prequantum geometry is of interest in its own right. For instance the above automorphism group naturally provides the [[Lie integration]] of the [[Poisson bracket]] [[Lie algebra]] of the underlying [[symplectic manifold]], together with the canonical injection into the [[group of bisections]] of the [[Lie integration]] of the \emph{[[Atiyah Lie algebroid]]} which is associated with the given circle bundle, all of which are fundamental objects of interest in the study of [[line bundles]] over [[manifolds]]. For a plethora of applications in [[differential geometry]], one wants to generalize this to \emph{[[higher differential geometry]]} (see at \emph{[[motivation for higher differential geometry]]}) and accordingly study \emph{higher prequantum geometry}. \hypertarget{motivation_and_survey_of_results}{}\subsection*{{Motivation and survey of results}}\label{motivation_and_survey_of_results} \hypertarget{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices}{}\subsubsection*{{Ordinary prequantum geometry in terms of automorphisms in slices}}\label{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices} A sequence of time-honored traditional concepts in [[geometric quantization]]/[[prequantum geometry]] is \begin{tabular}{l|l|l|l|l|l} [[Lie groups]]:&[[Heisenberg group]]&$\hookrightarrow$&[[quantomorphism group]]&$\hookrightarrow$&[[gauge group]]\\ \hline [[Lie algebras]]:&[[Heisenberg Lie algebra]]&$\hookrightarrow$&[[Poisson Lie algebra]]&$\hookrightarrow$&twisted [[vector fields]]\\ \end{tabular} For instance in the [[geometric quantization]] of the [[electromagnetic field|electrically]] [[charged particle|charged]] [[particle]] [[sigma-model]] we have a [[prequantum circle bundle]] $P$ with [[connection on a bundle]] $\nabla$ on a [[cotangent bundle]] $X = T^* Y$ which is essentially the [[pullback]] of the [[electromagnetic field]]-bundle on [[target space|target]] [[spacetime]] $Y$. Its \emph{[[quantomorphism group]]} is the group of [[diffeomorphisms]] $P \stackrel{\simeq}{\to} P$ of the total space of the prequantum bundle which preserve the connection (also called the \emph{[[contactomorphism]]} of $(P,\nabla)$ regarded as a [[regular contact manifold]]). For the following it is convenient to say this using the language of \emph{[[moduli stacks]]}: we may regard $X$ as a [[representable functor|representable]] [[sheaf]] on the [[site]] of [[smooth manifolds]] (a ``[[smooth space]]'') and then moreover as a [[representable functor|representable]] [[stack]] on this site (a ``[[smooth groupoid]]'') and make use of the tautological existence of the [[moduli stack]] of $U(1)$-[[principal connections]], which we write $\mathbf{B}U(1)_{conn}$ (we don't need further details right now, but they can be found for instance at \emph{[[circle n-bundle with connection]]} for details). By definition this is such that for any $X$ a map $\nabla \colon X \to \mathbf{B}U(1)_{conn}$ is equivalently a $U(1)$-[[principal connection]] and such that a [[homotopy]] $\eta \colon \nabla_1 \to \nabla_2$ between two such maps is equivalently a [[gauge transformation]] between two such connections. With this formulation a [[quantomorphism]] of the [[prequantum bundle]] $\nabla$ is equivalently a diagram of the form as on the right of \begin{displaymath} \mathbf{QuantMorph}(\nabla) = \left\{ \itexarray{ X &&\underoverset{\simeq}{\phi}{\to}&& X \\ & \searrow &\swArrow_{\eta}& \swarrow \\ && \mathbf{B}U(1)_{conn} } \right\} \end{displaymath} in the [[(2,1)-category]] of [[stacks]], namely a [[diffeomorphism]] $\phi \colon X \stackrel{\simeq}{\to} X$ of the base space of the bundle together with a [[gauge transformation]] of $U(1)$-[[principal connections]] $\eta \colon \phi^* \nabla \stackrel{\simeq}{\to} \nabla$. The [[quantomorphism group]] is naturally an ([[infinite-dimensional Lie group|infinite dimensional]]) [[Lie group]]. Its [[Lie algebra]] is the [[Poisson bracket]] [[Lie algebra]]. If $X$ is equipped with the structure of a [[Lie group]] itself (notably if it is a [[vector space]]), then the sub-Lie algebra of that on the [[invariant differential form|invariant vectors]] is the [[Heisenberg Lie algebra]] and the Lie group corresponding to that is the [[Heisenberg group]]. One also says that a triangular diagram as above is an autoequivalence of the ``modulating'' map $\nabla \colon X \to \mathbf{B}U(1)_{conn}$ in the \emph{[[slice (infinity,1)-category|slice (2,1)-category]]} of [[stacks]]/[[smooth groupoids]] over $\mathbf{B}U(1)_{conn}$. Such autoequivalences in slices are familiar from basic concepts of [[Lie groupoid]] theory. For $\mathcal{G} = (\mathcal{G}_1 \stackrel{\to}{\to} \mathcal{G}_0)$ a [[Lie groupoid]], we may regard the inclusion of its manifold of objects as an [[atlas]] being a map $p_\mathcal{G} \colon\mathcal{G}_0 \to \mathcal{G}$. Regarding this atlas as an object in the [[slice (infinity,1)-category|slice (2,1)-category]] of [[stacks]]/[[smooth groupoids]] over $\mathcal{G}$, its autoequivalences are diagrams as on the right of \begin{displaymath} \mathbf{BiSect}(p_{\mathcal{G}}) = \left\{ \itexarray{ \mathcal{G}_0 &&\stackrel{\phi}{\to}&& \mathcal{G}_0 \\ & \searrow &\swArrow_\eta & \swarrow \\ && \mathcal{G} } \right\} \,. \end{displaymath} This is a [[diffeomorphism]] $\phi \colon \mathcal{G}_0 \stackrel{\simeq}{\to} \mathcal{G}_0$ of the [[smooth manifold]] of [[objects]] equipped with a [[natural transformation]] $\eta$ whose component map is a [[smooth function]] that assigns to each point $q \in \mathcal{G_0}$ a [[morphism]] in $\mathcal{G}$ of the form $\eta_q \colon q \to \phi(q)$. This collection of data is known as a \emph{[[bisection]]} of a [[Lie groupoid]]. Bisections naturally form a group $\mathbf{BiSect}(p_{\mathcal{G}})$ , which is all the more manifest if we understand them as autoequivalences of the atlas in the slice, called the [[group of bisections]]. This perspective of regarding maps of [[smooth groupoids]] as objects in the slice over their codomain (an elementary step in [[higher category theory]]/[[(infinity,1)-topos theory|higher topos theory]], but not common in traditional differential geometry) turns out to be useful and drives all of the refinements, generalizations and theorems that we discuss in the following: we will see that higher [[prequantum geometry]] is essentially the geometry insice [[slice (infinity,1)-topos|higher slice categories]] of [[infinity-stack|higher stacks]] over [[moduli infinity-stack|higher moduli stacks]] of [[principal infinity-connection|higher principal connections]]. Before we get there, notice the following\ldots{} \hypertarget{TheNeedForHigherPrequantumBundles}{}\subsubsection*{{The need for higher prequantum bundles}}\label{TheNeedForHigherPrequantumBundles} The tools of [[geometric quantization]] mainly apply to [[quantum mechanics]] and only partially to [[quantum field theory]]. In particular in the context of \emph{[[extended prequantum field theory]]} in [[dimension]] $n$ a [[prequantum bundle]] over the ([[phase space|phase]]-)space of [[field (physics)|fields]] is to be refined (de-[[transgression|transgressed]]) to a \emph{[[prequantum n-bundle]]} over the [[moduli ∞-stack]] of [[field (physics)|fields]]. Therefore in order to apply [[geometric quantization]] to [[extended prequantum field theory]] to obtain [[extended quantum field theory]] we first need extended/higher prequantum geometry. For instance the [[prequantum n-bundle|prequantum 3-bundle]] for standard [[3d Chern-Simons theory|3d]] [[Spin group]] [[Chern-Simons theory]] is modulated by the differential [[smooth first fractional Pontryagin class]] \begin{displaymath} \itexarray{ \mathbf{B}Spin_{conn} &\stackrel{\tfrac{1}{2}\hat \mathbf{p}_1}{\to}& \mathbf{B}^3 U(1)_{conn} \\ \downarrow && \downarrow & forget \; connections \\ \mathbf{B}Spin &\stackrel{\tfrac{1}{2}\mathbf{p}_1}{\to}& \mathbf{B}^3 U(1) \\ \downarrow && \downarrow & geometric\;realization \\ B Spin &\stackrel{\tfrac{1}{2}p_1}{\to}& K(\mathbb{Z},4) } \,, \end{displaymath} modulating/clsasifying the universal \emph{[[Chern-Simons circle 3-bundle with connection]]} (also known as a \emph{[[bundle 2-gerbe]]}) over the [[moduli stack]] of [[field (physics)|fields]] of $G$-Chern-Simons theory, which is the moduli stack $\mathbf{B}G_{conn}$ of $G$-[[principal connection]]. Similarly the [[prequantum n-bundle|prequantum 7-bundle]] for [[7d Chern-Simons theory]] on [[string 2-group]] [[principal infinity-connections|principal 2-connections]] is given by the differential [[smooth second fractional Pontryagin class]] \begin{displaymath} \itexarray{ \mathbf{B}String_{conn} &\stackrel{\frac{1}{6}\hat \mathbf{p}_2}{\to}& \mathbf{B}^7 U(1)_{conn} \\ \downarrow && \downarrow & forget\; connections \\ \mathbf{B}String &\stackrel{\frac{1}{6}\mathbf{p}_2}{\to}& \mathbf{B}^7 U(1) \\ \downarrow && \downarrow & geometric\; realization \\ B String &\stackrel{\frac{1}{6}p_2}{\to}& K(\mathbb{Z},8) } \,, \end{displaymath} modulating/classifying the universal \emph{[[Chern-Simons circle 7-bundle with connection]]} over the moduli 2-stack $\mathbf{B}String_{conn}$ of [[string 2-group]] [[principal infinity-connection|principal 2-connections]]. Therefore we want to lift the \hyperlink{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices}{above} table of traditional notions to [[higher geometry]]\ldots{} \hypertarget{brief_recollection_higher_geometry}{}\subsubsection*{{Brief recollection: Higher geometry}}\label{brief_recollection_higher_geometry} In order to say this, clearly we need some basics of [[higher geometry]]\ldots{} \begin{displaymath} \itexarray{ && Groupoids \\ & \swarrow && \searrow^{\mathrlap{nerve}} \\ Categories && && Kan complexes \\ & \searrow && \swarrow \\ && (\infty,1)-Categories } \,. \end{displaymath} Important construction principle for [[(∞,1)-categories]]: [[simplicial localization]]. For $\mathcal{C}$ a [[category]] with some subset of morphisms $W \hookrightarrow Mor(\mathcal{C})$ declared to be ``[[weak equivalences]]'', the [[simplicial localization]] \begin{displaymath} L_W \mathcal{C} \in (\infty,1)Cat \end{displaymath} is the [[universal construction|universal]] $(\infty,1)$-category obtained from $\mathcal{C}$ by universally turning each weak equivalence into an actual [[homotopy equivalence]] in the sense of [[homotopy theory]]. In particular let $C$ be a [[site]], assumed for simplicity to have [[point of a topos|enough points]]. Declare then that in the [[functor category]] $Func(C^{op}, KanCplx)$, hence in [[Kan complex]]-valued presheaves, the weak equivalences are the [[stalk|stalkwise]] [[homotopy equivalences]] of Kan complexes. Then \begin{displaymath} \mathbf{H} \coloneqq Sh_{\infty}(C) \coloneqq L_{W} Func(C^{op}, KanCplx) \end{displaymath} is called the \emph{[[(∞,1)-topos]]} of [[(∞,1)-sheaves]]/[[∞-stacks]] on $C$. An [[A-∞ algebra]]-object $G$ in such an $(\infty,1)$-topos such that $\pi_0(G)$ is a [[group]] is called an [[∞-group]] ``with geometric structure as encoded by the test spaces $C$''. The canonical source of $\infty$-groups are the [[homotopy fiber products]] of point inclusions $* \to X$ of any object X, the [[loop space object]] \begin{displaymath} \Omega X \coloneqq {*} \underset{X}{\times} {*} \,. \end{displaymath} In fact this are \emph{all} the [[∞-groups]] that there are, up to equivalence: forimg [[loop space objects]] is an [[equivalence of (∞,1)-categories]] \begin{displaymath} Grp(\mathbf{H}) \stackrel{\overset{\Omega}{\leftarrow}}{\underoverset{\mathbf{B}}{\simeq}{\to}} \mathbf{H}^{*/}_{\geq 1} \end{displaymath} between [[∞-groups]] and [[pointed object|pointed]] [[connected object in an (∞,1)-topos|connected]] objects. The inverse equivalence $\mathbf{B}$ is the \emph{[[delooping]]} operation. We say that such an $(\infty,1)$-topos $\mathbf{H}$ is \emph{[[cohesive]]} if it is equipped with an [[adjoint triple]] of [[idempotent monad|idempotent]] (co)/[[(∞,1)-monads]] \begin{tabular}{l|l|l|l|l} [[shape modality]]&&[[flat modality]]&&[[sharp modality]]\\ \hline idemp. monad&&idemp. comonad&&idemp. monad\\ $\Pi$&$\dashv$&$\flat$&$\dashv$&$\sharp$\\ \end{tabular} This implies (strictly speaking we need [[differential cohesion]] for that, coming from another adjoint triple of (co)monads) that for every [[braided ∞-group]] $\mathbb{G} \in Grp(\mathbf{H})$ there is a canonical object $\mathbf{B}\mathbb{G}_{conn}$ which modulats $\mathbb{G}$-[[principal ∞-connections]]. \hypertarget{higher_atiyah_groupoids}{}\subsubsection*{{Higher Atiyah groupoids}}\label{higher_atiyah_groupoids} Looking at the \hyperlink{OrdinaryPrequantumGeometryInTermsofAutomorphismsInSlices}{above} table and noticing the \hyperlink{TheNeedForHigherPrequantumBundles}{above} need for higher prequantum bundles, we should try to find an analogous table of concepts in [[higher geometry]], something like this: [[!include slice automorphism groups in higher prequantum geometry - table]] (\ldots{}) The way all these notions and theorems work is by considering [[automorphism ∞-groups]] of the classifying (or rather: modulating) maps $\nabla \colon X \to \mathbf{B}\mathbb{G}_{conn}$ of a [[prequantum ∞-bundle]] in the [[slice (∞,1)-topos]] over the domain. For instance \begin{displaymath} \mathbf{QuantMorph}(\nabla) = \left\{ \itexarray{ X && \underoverset{\simeq}{\phi}{\to} && X \\ & {}_{\mathllap{\nabla}}\searrow &\swArrow& \swarrow_{\mathrlap{\nabla}} \\ && \mathbf{B}\mathbb{G}_{conn} } \right\} \,. \end{displaymath} The others are obtained by succesively forgetting connection data. For instance \begin{displaymath} \BiSect(Cou(\nabla)) = \left\{ \itexarray{ X && \underoverset{\simeq}{\phi}{\to} && X \\ & {}_{\mathllap{\nabla_1}}\searrow &\swArrow& \swarrow_{\mathrlap{\nabla_1}} \\ && \mathbf{B}(\mathbf{B}\mathbb{G}_{conn}) } \right\} \,. \end{displaymath} and \begin{displaymath} \BiSect(At(\nabla)) = \left\{ \itexarray{ X && \underoverset{\simeq}{\phi}{\to} && X \\ & {}_{\mathllap{\nabla_0}}\searrow &\swArrow& \swarrow_{\mathrlap{\nabla_0}} \\ && \mathbf{B}\mathbb{G} } \right\} \,. \end{displaymath} The extension sequence is then schematically simply the following \begin{displaymath} \left\{ \itexarray{ && X \\ & \swarrow & & \searrow \\ & \searrow &\swArrow& \swarrow \\ && \mathbf{B}\mathbb{G}_{conn} } \right\} \; \to \; \left\{ \itexarray{ X &&\stackrel{\simeq}{\to}&& X \\ & {}_{\mathllap{\nabla}}\searrow &\swArrow& \swarrow_{\mathrlap{\nabla}} \\ && \mathbf{B}\mathbb{G}_{conn} } \right\} \; \to \; \left\{ \itexarray{ X && \stackrel{\simeq}{\to} && X } \right\} \end{displaymath} in this generality this now includes various other notions, too: [[!include higher Atiyah groupoid - table]] \hypertarget{the_central_theorem_quantomorphism_group_extensions}{}\subsubsection*{{The central theorem: Quantomorphism $\infty$-group extensions}}\label{the_central_theorem_quantomorphism_group_extensions} \begin{theorem} \label{}\hypertarget{}{} For $\mathbb{G}$ a [[braided ∞-group]] and $\nabla \colon X \to \mathbf{B}\mathbb{G}_{conn}$ a higher prequantum geometry with respect to $\mathbb{G}$ there is a long [[homotopy fiber sequence]] \begin{displaymath} \left(\Omega \mathbb{G}\right)\mathbf{FlatConn}\left(\nabla\right) \to \mathbf{QuantMorph}(\nabla) \to \mathbf{HamSympl}(\nabla) \stackrel{\nabla \circ (-)}{\to} \mathbf{B}\left(\left(\Omega \mathbb{G}\right)\mathbf{FlatConn}\left(\nabla\right) \right) \,. \end{displaymath} Similarly there is the [[Heisenberg infinity-group]] extension \begin{displaymath} (\Omega \mathbb{G})\mathbf{FlatConn}(X) \to \mathbf{Heis}(\nabla) \to G \end{displaymath} \end{theorem} \begin{theorem} \label{}\hypertarget{}{} The [[Lie differentiation]] of the [[∞-group extension]] sequence of prop. \ref{QuantomorphismExtension} is a [[homotopy fiber sequence]] of [[L-∞ algebras]] \begin{displaymath} \mathbf{H}(X, \flat \mathbf{B}^{n-1}\mathbb{R}) \to \mathfrak{Poisson}(X,\omega) \to \mathcal{X}_{Ham}(X,\omega) \stackrel{\iota_{(-)\omega}}{\to} \mathbf{B}\mathbf{H}(X, \flat \mathbf{B}^{n-1}\mathbb{R}) \,, \end{displaymath} where \begin{itemize}% \item $\mathfrak{Poisson}(X,\omega)$ is the [[Poisson Lie n-algebra]] as defined in (\hyperlink{Rogers11}{Rogers 11}). \item $\mathcal{X}_{Ham}$ is the Lie algebra of [[vector fields]] restricted to the [[Hamiltonian vector fields]]; \item $\mathbf{H}(X, \flat (\mathbf{B}^{n-1})\mathbb{R})$ is the [[chain complex]] for flat [[de Rham cohomology]] in the given degree, regarded as an abelian [[L-∞ algebra]]. \end{itemize} \end{theorem} The following table shows what this sequence reduces to when one chooses $\mathbb{G} = \mathbf{B}^{n-1}U(1)$. [[!include geometric quantization extensions - table]] \hypertarget{examples__and__as_heisenberg_groups}{}\subsubsection*{{Examples: $String$ and $Fivebrane$ as Heisenberg $\infty$-groups}}\label{examples__and__as_heisenberg_groups} \begin{example} \label{}\hypertarget{}{} For $G$ a simply connected semisimple compact Lie group such as the [[spin group]], let \begin{displaymath} \nabla \coloneqq \exp\left(2 \pi i \int_{S^1} [S^1, \tfrac{1}{2}\hat \mathbf{p}_1]\right) \;\colon\; G \to \mathbf{B}^2 U(1)_{conn} \end{displaymath} be the canonical [[circle 2-bundle with connection]] over it. Then the [[Heisenberg infinity-group|Heisenberg 2-group]] [[infinity-group extension|extension]] \begin{displaymath} U(1)\mathbf{FlatConn}(G) \to \mathbf{Heis}(\nabla) \to G \end{displaymath} is the [[string 2-group]] extension \begin{displaymath} \mathbf{B}U(1) \to String(G) \to G \,. \end{displaymath} \end{example} (by classification of extensions by cohomology\ldots{} by Lie 2-algebra computation\ldots{}) (and analogously for [[fivebrane 6-group]]\ldots{}) \begin{displaymath} \mathbf{B}^6 U\left(1\right) \to \mathbf{Heis}\left(\exp\left(2 \pi i \int_{S^1} \left[S^1, \tfrac{1}{2}\hat \mathbf{p}_2\right] \right)\right) \to String \end{displaymath} \hypertarget{constructions_in_higher_prequantum_geometry}{}\subsection*{{Constructions in higher prequantum geometry}}\label{constructions_in_higher_prequantum_geometry} [[!include slice automorphism groups in higher prequantum geometry - table]] [[!include higher Atiyah groupoid - table]] [[!include geometric quantization extensions - table]] \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Poisson bracket Lie n-algebra]] \item [[definite parameterization of WZW terms]] \item [[definite globalization of WZW terms]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} See also the references at \emph{[[n-plectic geometry]]} and at \emph{[[higher geometric quantization]]} \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantum theory|Higher $U(1)$-gerbe connections in geometric prequantization]]}, Rev. Math. Phys., Vol. 28, Issue 06, 1650012 (2016) (\href{http://arxiv.org/abs/1304.0236}{arXiv:1304.0236}) \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:L-∞ algebras of local observables from higher prequantum bundles]]}, Homology, Homotopy and Applications, Volume 16 (2014) Number 2, p. 107 -- 142 (\href{http://arxiv.org/abs/1304.6292}{arXiv:1304.6292}) \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} (\href{http://arxiv.org/abs/1310.7930}{arXiv:1310.7930}) \end{itemize} [[!redirects higher prequantization]] [[!redirects higher prequantizations]] [[!redirects higher pre-quantization]] [[!redirects higher pre-quantizations]] \end{document}