\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{holographic principle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{some_details}{Some details}\dotfill \pageref*{some_details} \linebreak \noindent\hyperlink{MoreDetails}{More details}\dotfill \pageref*{MoreDetails} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{PoissonHolography}{Poisson holography}\dotfill \pageref*{PoissonHolography} \linebreak \noindent\hyperlink{3dCS-2dCFT}{Holography of higher Chern-Simons/CFT-type}\dotfill \pageref*{3dCS-2dCFT} \linebreak \noindent\hyperlink{rt3d_tqft__rational_2d_cft}{RT-3d TQFT / rational 2d CFT}\dotfill \pageref*{rt3d_tqft__rational_2d_cft} \linebreak \noindent\hyperlink{OrdinaryCSWZWModel}{Ordinary Chern-Simons theory / WZW-model}\dotfill \pageref*{OrdinaryCSWZWModel} \linebreak \noindent\hyperlink{poisson_model__quantum_mechanics}{Poisson $\sigma$-model / quantum mechanics}\dotfill \pageref*{poisson_model__quantum_mechanics} \linebreak \noindent\hyperlink{amodel__quantum_mechanics}{A-model / quantum mechanics}\dotfill \pageref*{amodel__quantum_mechanics} \linebreak \noindent\hyperlink{HigherDimCSAndSelfDualQFT}{Higher dimensional Chern-Simons theory / Self-dual higher gauge theory}\dotfill \pageref*{HigherDimCSAndSelfDualQFT} \linebreak \noindent\hyperlink{idea_and_examples}{Idea and examples}\dotfill \pageref*{idea_and_examples} \linebreak \noindent\hyperlink{some_details_2}{Some details}\dotfill \pageref*{some_details_2} \linebreak \noindent\hyperlink{holography_of_ads_gravitycfttype}{Holography of AdS gravity/CFT-type}\dotfill \pageref*{holography_of_ads_gravitycfttype} \linebreak \noindent\hyperlink{SYMAds5}{Type II on $AdS_5 \times S^5$ and $d = 4$ super Yang-Mills}\dotfill \pageref*{SYMAds5} \linebreak \noindent\hyperlink{6dAdS7}{M-theory on $AdS_7 \times S^4$ and 6d $(2,0)$-SCFT on M5 branes}\dotfill \pageref*{6dAdS7} \linebreak \noindent\hyperlink{mtheory_on__and_chernsimons_on_m2_branes}{M-theory on $AdS_4 \times S^7/\mathbb{Z}_k$ and Chern-Simons on M2 branes}\dotfill \pageref*{mtheory_on__and_chernsimons_on_m2_branes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{adscft}{AdS/CFT}\dotfill \pageref*{adscft} \linebreak \noindent\hyperlink{ReferencesCS-CFT}{Chern-Simons / CFT}\dotfill \pageref*{ReferencesCS-CFT} \linebreak \noindent\hyperlink{on_the_level_of_action_functionals}{On the level of action functionals}\dotfill \pageref*{on_the_level_of_action_functionals} \linebreak \noindent\hyperlink{matching_of_spaces_of_states_to_conformal_blocks}{Matching of spaces of states to conformal blocks}\dotfill \pageref*{matching_of_spaces_of_states_to_conformal_blocks} \linebreak \noindent\hyperlink{RTAnd2dCFT}{Reshetikhin-Turaev 3d TQFT and rational 2d CFT}\dotfill \pageref*{RTAnd2dCFT} \linebreak \noindent\hyperlink{selfdual_higher_gauge_fields_and_higher_abelian_chernsimons}{Self-dual higher gauge fields and higher abelian Chern-Simons}\dotfill \pageref*{selfdual_higher_gauge_fields_and_higher_abelian_chernsimons} \linebreak \noindent\hyperlink{poisson_modelamodel_and_quantum_mechanics}{Poisson $\sigma$-model/A-model and quantum mechanics}\dotfill \pageref*{poisson_modelamodel_and_quantum_mechanics} \linebreak \noindent\hyperlink{3d_chernsimons_theory__2d_cft}{3d Chern-Simons theory / 2d CFT}\dotfill \pageref*{3d_chernsimons_theory__2d_cft} \linebreak \noindent\hyperlink{chernsimonscft_in_adscft}{Chern-Simons/CFT in AdS/CFT}\dotfill \pageref*{chernsimonscft_in_adscft} \linebreak \noindent\hyperlink{black_hole__cft_correspondence}{Black hole / CFT correspondence}\dotfill \pageref*{black_hole__cft_correspondence} \linebreak \noindent\hyperlink{general_abstract_formulation}{General abstract formulation}\dotfill \pageref*{general_abstract_formulation} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[quantum field theory]] what has come to be known as the \emph{holographic principle} is the fact that the [[correlators]]/[[partition functions]] of some [[quantum field theories]] of [[dimension]] $n$ may be identified with [[states]] of a [[TQFT]] of dimension $n + 1$. [[!include holographic principle -- table]] \hypertarget{some_details}{}\subsubsection*{{Some details}}\label{some_details} Notice that for $\Sigma$ an $(n+1)$-dimensional manifold with $n$-dimensional [[boundary]] $\partial \Sigma$, regarded as a [[cobordism]] $\Sigma : \emptyset \to \partial \Sigma$, an $(n+1)$-dimensional TQFT assigns a morphism \begin{displaymath} Z(\Sigma) : 1 \to Z(\partial \Sigma) \,, \end{displaymath} hence an element of the space $Z(\partial \Sigma)$. Under holography, this element is identified with the [[partition function]] of an $n$-dimensional QFT evaluated on the manifold (without boundary) $\partial \Sigma$. The idea that some systems in physics are governed by other systems ``localized at a boundary'' in this kind of way was originally suggested by the behaviour of [[black holes]] in [[general relativity]]: their [[black hole entropy]] is proportional to their ``surface'', as reflected by the [[generalized second law of thermodynamics]]. This made [[Gerard `t Hooft]] suggest a general principle, called the \emph{holographic principle}, which however remained somewhat vague (\hyperlink{tHooft93}{t'Hooft 93}, \hyperlink{Susskind94}{Susskind 94}). Later, two more precise classes of correspondences were identified, that are regarded now as precise examples of the general idea of the holographic principle: \begin{enumerate}% \item Systems of [[Chern-Simons theory]] and [[higher dimensional Chern-Simons theory]] can be shown explicitly to have spaces of states that are canonically identified with correlator spaces of [[CFT]]s ([[conformal block]]s) and [[self-dual higher gauge theory]] on their boundary. (The relation of traditional 3d [[Chern-Simons theory]] to the 2d [[WZW model]] originates in (\hyperlink{Witten89}{Witten 89}) and hence precedes the proposal of (\hyperlink{tHooft93}{t'Hooft 93}, \hyperlink{Susskind94}{Susskind 94}), but this relation was not recognized from this perspective earlier.) \item Systems of [[quantum gravity]] in various dimensions as given by [[string theory]] on asymptotically [[anti de Sitter spacetime]]s have been checked not in total but in a multitude of special aspects in special cases to be dual to [[supersymmetric]] [[CFT]]s on their asymptotic boundary -- this is called [[AdS/CFT correspondence]]. \end{enumerate} \begin{remark} \label{}\hypertarget{}{} In view of these two classes of examples it is maybe noteworthy that one can see that also closed [[string field theory]], which is supposed to be one side of the [[AdS/CFT correspondence]], has the form of an [[schreiber:infinity-Chern-Simons theory]], as discussed there, for the [[L-infinity algebra]] of closed string correlators. So maybe the above two different realizations of the holographic principle are really aspects of one single mechanism for $\infty$-Chern-Simons theory. Evidence for this also comes from the details of the AdS/CFT mechanism. In (\hyperlink{Witten98}{Witten98}) it is discussed how the \hyperlink{SYMAds5}{SYM/IIB duality} is carried by the Chern-Simons term $\int B_{NS} \wedge d B_{RR}$ in the [[type II string theory]] action, the \hyperlink{6dAdS7}{6d(2,0)/AdS7 duality} - is induced by the Chern-Simons term $\int C_3 \wedge d C_3 \wedge d C_3$ of the [[11-dimensional supergravity]] action. \end{remark} Below at \emph{\href{Examples}{Examples}} we list some systems for which something along these lines is known. \hypertarget{MoreDetails}{}\subsubsection*{{More details}}\label{MoreDetails} We discuss in a bit more detail the central idea of holography, roughly for the case of Chern-Simons type theories and making some simplifications, but giving a precise statement. The general idea is that [[field (physics)|fields]] $\phi$ in the bulk theory are identified with [[source fields]] in the [[correlation functions]] of the boundary theory. The archetypical example is the relation between the [[correlators]] of the [[WZW model]] on a [[Lie group]] $G$ with the [[space of quantum states]] of 3d $G$-[[Chern-Simons theory]], as reviewed for instance on page 30 of (\hyperlink{Gawedzki99}{Gawdzki 99}): a [[correlator]] for the WZW model with source field $A$ has to satisfy a conformal transformation property called a [[Ward identity]]. The space of all suitable functionals satisfying these identities is the space of [[conformal blocks]]. That space is equivalently identified with the space of [[wave functions]] of Chern-Simons theory depending on the fields $A$, hence the quantum states of the CS theory. More generally, consider some $n$-dimensional [[FQFT]] $Z_B$ and assume that the [[spaces of states]] that it assigns to any $(n-1)$-dimensional manifold $X$ are of finite [[dimension]] (over some ground field $\mathbb{C}$): \begin{displaymath} dim Z_B(X) \lt \infty \,. \end{displaymath} Then for $\Sigma : \partial_{in}{\Sigma} \to \partial_{out}{\Sigma}$ any [[cobordism]] of dimension $n$, the [[correlator]] \begin{displaymath} Z_B(\Sigma) : Z_B(\partial_{in} \Sigma) \to Z_B(\partial_{out} \Sigma) \end{displaymath} that $Z_B$ assigns may naturally be identified, under the [[closed monoidal category|closed monoidal structure]] of [[Vect]], as an element \begin{displaymath} \begin{aligned} \overline{Z_B(\Sigma)} & \in Z_B(\partial_{in} \Sigma)^{*} \otimes Z_B(\partial_{out} \Sigma) \\ & \simeq Z_B(\partial \Sigma) \end{aligned} \,. \end{displaymath} Stated differently: the vector space $Z_B(\partial \Sigma)$ is the space of all ``potential correlators'' of $Z_B$ and $\overline{Z_B(\Sigma)}$ is the particular one chosen by the given model. If $Z_B$ is really a [[CFT]] one calls a subspace $Bl_B(\Sigma) \subset Z(\partial\Sigma)$ of elements that respect conformal invariance in a certain way the space of \emph{[[conformal block]]s} and calls the assignment $\Sigma \mapsto Bl_B(\Sigma)$ the [[modular functor]] of the model. Notice that by looking at all ``potential correlators'' this way we are suddenly assigning vector spaces in codimension 0 (on $\Sigma$), even though the axioms of an [[FQFT]] a priori only mention vector spaces (of states) assigned in codimension 1. Given all these spaces of ``[[conformal block]]s'', the (re)construction of $Z_B$ consists of choosing inside each $Bl_B(\Sigma)$ the actual correlator $\overline{Z_B(\Sigma)}$ (this way of looking at [[TQFT]]s $B$ is actually the way in which \href{}{Atiyah} originally formuated the axioms of [[FQFT]]). But since we are dealing now with vector spaces assigned to $n$-dimensional $\Sigma$, we can ask the following question: is there an $(n+1)$-dimensional [[extended TQFT]] $A$ such that \begin{enumerate}% \item there is an [[isomorphism]] \begin{displaymath} Z_A(\Sigma) \simeq Z_B(\partial \Sigma) = Bl_B(\Sigma) \end{displaymath} \item such that whenever $\hat \Sigma$ cobounds $\Sigma$ the linear map \end{enumerate} \begin{displaymath} Z_A : \mathbb{C} = Z_A(\hat \Sigma) \stackrel{Z_A(\hat \Sigma)}{\to} Z_A(\partial \hat \Sigma) \simeq Bl_B(\Sigma) \end{displaymath} sends $1 \in \mathbb{C}$ to $\overline{Z_B(\Sigma)}$. If so, we say that $A$ is a \textbf{holographic dual} to $B$. Notice that $Z_A(\Sigma)$ is the space of \textbf{[[state]]s} of $A$ over $\Sigma$, while $Bl_B(\Sigma)$ is the space of possible \textbf{[[correlator]]s} of $B$ over $\Sigma$. Under holography, the states of $A$ are identified with the correlators of $B$. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{PoissonHolography}{}\subsubsection*{{Poisson holography}}\label{PoissonHolography} One of the key statements of the holographic principle is that [[field (physics)|fields]] of a [[bulk field theory]] correspond to [[sources]] in its [[boundary field theory]]. One set-up where this can be made a formal [[theorem]] is for [[2d Chern-Simons theory]] which is a [[non-perturbative field theory|non-perturbative]] [[Poisson sigma-model]]. This theorem is discussed at \begin{itemize}% \item \emph{\href{http://ncatlab.org/nlab/show/off-shell+Poisson+bracket#BoundaryFieldTheoryInterpretation}{off-shell Poisson bracket -- boundary field theory interpretation}}. \item \emph{\href{motivic+quantization#PoissonHolography}{motivic quantization -- Poisson holography}}. \end{itemize} \hypertarget{3dCS-2dCFT}{}\subsubsection*{{Holography of higher Chern-Simons/CFT-type}}\label{3dCS-2dCFT} See also \emph{[[AdS3-CFT2 and CS-WZW correspondence]]}. \hypertarget{rt3d_tqft__rational_2d_cft}{}\paragraph*{{RT-3d TQFT / rational 2d CFT}}\label{rt3d_tqft__rational_2d_cft} The class of examples of ``Chern-Simons-type holography'' we mention now has fairly completely and rigorously been understood. It is in turn a special and comparatively simple (but far from trivial) case of the historically earliest class of examples: \hyperlink{OrdinaryCSWZWModel}{ordinary Chern-Simons theory dual to a 2d WZW model} below. For more see at \emph{[[AdS3-CFT2 and CS-WZW correspondence]]}. Given any [[modular tensor category]] $C$ the [[Reshetikhin-Turaev construction]] produces a 3-dimensional [[TQFT]] $Z_C$. Its space of states over a 2-dimensional surface can be identified (after some work) with a space of [[conformal block]]s for a [[WZW-model]]-liked $2d$ CFT. The [[FRS formalism]] provides a way to show that the states of $Z_C$ provides [[correlators]] that solve the [[sewing constraints]]. \hypertarget{OrdinaryCSWZWModel}{}\paragraph*{{Ordinary Chern-Simons theory / WZW-model}}\label{OrdinaryCSWZWModel} For a given [[Lie group]] $G$, ordinary 3-dimensional $G$-[[Chern-Simons theory]] for a group $G$ is holographically dual to the 2-dimensional [[WZW-model]] describing the [[string]] propagating on $G$. Here is a list with aspects of this correspondence: \begin{enumerate}% \item At the level of [[action functionals]] the relation is directly seen by observing that on a 3-d [[manifold with boundary]] the [[Chern-Simons theory]] action is not gauge invariant, but has a boundary term depending on the gauge transformation. Since the gauge transformation is a function on the 2d boundary with values in $G$, this boundary term is like an action functional for a [[sigma-model]] with [[target space]] $G$, and indeed it is that (subject to some fine-tuning) of the $G$-[[WZW model]]. A random source reviewing this is for instance (\hyperlink{ArcioniBlauLoughlin}{Arcioni-Blau-Loughlin, p. 6}). \item More abstractly, at least for simply connected compact $G$, the action functionals are also related by [[transgression]] of [[moduli stacks]] as discussed at \emph{[[schreiber:infinity-Chern-Simons theory]]}. The action functional of $G$-Chern-Simons theory is induced by the morphism \begin{displaymath} \mathbf{c}_{conn} : \mathbf{B}G_{conn} \to \mathbf{B}^3 U(1)_{conn} \end{displaymath} from the [[smooth infinity-groupoid|smooth]] [[moduli stack]] of $G$-[[connection on a bundle|bundles with connection]] to the [[smooth infinity-groupoid|smooth]] [[moduli infinity-stack|moduli 3-stack]] of [[circle n-bundle with connection|circle 3-bundles with connection]] (discussed in detail at [[differential string structure]] ) in that for $\Sigma_3$ a compact 3d-dimensional surface the Chern-Simons action is the composite \begin{displaymath} \exp(i S_{CS}(-)) : [\Sigma_3, \mathbf{B} G_{conn}] \stackrel{[\Sigma_3, \mathbf{c}_{conn}]}{\to} [\Sigma_3, \mathbf{B}^3 U(1)_{conn}] \stackrel{\exp(2 \pi i \int_{\Sigma_3}(-))}{\to} U(1) \,, \end{displaymath} where the last morphism is given by [[fiber integration in ordinary differential cohomology]]. Topological term in the WZW-model (the [[B-field]] [[background gauge field]]) is similarly the term appearing in [[codimension]] 2. This is discussed at \emph{\href{Chern-Simons%20theory#GeometricQuantHigher}{Chern-Simons theory -- Geometric quantization -- In higher codimension}}. \item At the level of matching [[space of states]] of CS-theory with the [[partition function]] of the WZW model this is a computation obtained from the [[geometric quantization]] of the CS-action, originally due to (\hyperlink{Witten}{Witten}). A review is in (\hyperlink{Gawedzki}{Gawedzki, section 5}). \item If one accepts that the [[quantization]] of the $G$-Chern-Simons [[action functional]] yields the [[TQFT]] given by the [[Reshetikhin-Turaev construction]] applied to the [[modular tensor category]] of $G$-[[loop group]] representations, then a detailed construction of the correspondence CS-TQFT/WZW-CFT is what the [[FFRS-formalism]] achieves. See there for more details. More comments on the holographic interpretation of this formalism are in (\hyperlink{KapustinSaulina}{Kapustin-Saulina}, \hyperlink{FuchsSchweigertValentino}{Fuchs-Schweigert-Valentino}). \end{enumerate} \hypertarget{poisson_model__quantum_mechanics}{}\paragraph*{{Poisson $\sigma$-model / quantum mechanics}}\label{poisson_model__quantum_mechanics} Ordinary [[quantum mechanics]] induced by [[quantization]] of a [[Poisson manifold]] -- which may be regarded as a 1-dimensional QFT -- is holographically dual to the 2-dimensional [[Poisson sigma-model]] (implicitly observed by (\hyperlink{Kontsevich}{Kontsevich}) made explicit by (\hyperlink{CattaneoFelder}{CattaneoFelder}). (Notice the [[Poisson sigma-model]] is the $(n = 2)$-case of the [[AKSZ sigma-model]] which is indeed an example of a [[schreiber:infinity-Chern-Simons theory]], as discussed there.) \hypertarget{amodel__quantum_mechanics}{}\paragraph*{{A-model / quantum mechanics}}\label{amodel__quantum_mechanics} Similarly the [[A-model]] on certain [[D-brane]]s gives a holographic description of ordinary [[quantum mechanics]]. (\hyperlink{WittenAModel}{Witten}). See \begin{itemize}% \item [[quantization via the A-model]] \end{itemize} Notice that the A-model arises from the [[Poisson sigma-model]], as discussed there. \hypertarget{HigherDimCSAndSelfDualQFT}{}\paragraph*{{Higher dimensional Chern-Simons theory / Self-dual higher gauge theory}}\label{HigherDimCSAndSelfDualQFT} \hypertarget{idea_and_examples}{}\paragraph*{{Idea and examples}}\label{idea_and_examples} Generally, [[higher dimensional Chern-Simons theory]] in dimension $4k+3$ (for $k \in \mathbb{N}$) is holographically related to [[self-dual higher gauge theory]] in dimension $4k+2$ (at least in the abelian case). \begin{itemize}% \item $(k=0)$: ordinary 3-dimensional [[Chern-Simons theory]] is related to a [[string]] [[sigma-model]] on its boundary; \item $(k=1)$: 7-dimensional Chern-Simons theory is related to a [[fivebrane]] model on its boundary; \item $(k=2)$: 11-dimensional Chern-Simons theory is related to a parts of a [[type II string theory]] on its boundary (or that of the space-filling 9-[[brane]], if one wishes) (\hyperlink{BelovMoore}{BelovMoore}). \end{itemize} \hypertarget{some_details_2}{}\paragraph*{{Some details}}\label{some_details_2} We indicate why [[higher dimensional Chern-Simons theory]] is -- if holographically related to anything -- holographically related to [[self-dual higher gauge theory]]. The [[phase space]] of [[higher dimensional Chern-Simons theory]] in [[dimension]] $4k+3$ on $\Sigma \times \mathbb{R}$ can be identified with the space of [[curvature|flat]] $2k+1$-forms on $\Sigma$. The [[presymplectic form]] on this space is given by the pairing \begin{displaymath} (\delta B_1, \delta B_2) \mapsto \int_\Sigma \delta B_1 \wedge \delta B_2 \,. \end{displaymath} The [[geometric quantization]] of the theory requires that we choose a polarization of the [[complexification]] of this space (split the space of forms into ``coordinates'' and their ``canonical momenta''). One way to achieve this is to choose a [[conformal structure]] on $\Sigma$. The corresponding [[Hodge star operator]] \begin{displaymath} \star : \Omega^{2k+1}(\Sigma) \to \Omega^{2k+1}(\Sigma) \end{displaymath} provides the polarization by splitting into self-dual and anti-self-dual forms: notice that (by the formulas at [[Hodge star operator]]) we have on mid-dimensional forms \begin{displaymath} \star \star B = (-1)^{(2k+1)(4k+3)} B = - B \,. \end{displaymath} Therefore it provides a [[complex structure]] on $\Omega^{2k+1}(\Sigma) \otimes \mathbb{C}$. We see that the symplectic structure on the space of forms can equivalently be rewritten as \begin{displaymath} \begin{aligned} \int_X B_1 \wedge B_2 & = - \int_X B_1 \wedge \star \star B_2 \end{aligned} \,. \end{displaymath} Here on the right now the [[Hodge star operator|Hodge inner product]] of $B_1$ with $\star B_2$ appears, which is invariant under applying the Hodge star to both arguments. We then decompose $\Omega^{2k+1}(\Sigma)$ into the $\pm i$-[[eigenspace]]s of $\star$: say $B \in \Omega^{2k+1}(\Sigma)$ is \emph{imaginary self-dual} if \begin{displaymath} \star B = i B \end{displaymath} and \emph{imaginary anti-self-dual} if \begin{displaymath} \star B = - i B \,. \end{displaymath} Then for imaginary self-dual $B_1$ and $B_2$ we find that the symplectic pairing is \begin{displaymath} \begin{aligned} (B_1, B_2) &= -i \int_X B_1 \wedge \star B_2 \\ & = -i \int_X (\star B_1) \wedge \star (\star B_2) \\ & = +i \int_X B_1 \wedge \star B_2 \end{aligned} \,. \end{displaymath} Therefore indeed the symplectic pairing vanishes on the self-dual and on the anti-selfdual forms. Evidently these provide a decomposition into [[Lagrangian subspace]]s. Therefore a [[state]] of higher Chern-Simons theory on $\Sigma$ may locally be thought of as a function of the self-dual forms on $\Sigma$. Under holography this is (therefore) identified with the [[correlator]] of a [[self-dual higher gauge theory]] on $\Sigma$. \hypertarget{holography_of_ads_gravitycfttype}{}\subsubsection*{{Holography of AdS gravity/CFT-type}}\label{holography_of_ads_gravitycfttype} \hypertarget{SYMAds5}{}\paragraph*{{Type II on $AdS_5 \times S^5$ and $d = 4$ super Yang-Mills}}\label{SYMAds5} Conjecturally, [[type II string theory]] on a [[anti-de Sitter space]] background is holographically dual to [[super Yang-Mills theory]] on the asymptotic boundary. See [[AdS/CFT correspondence]]. \hypertarget{6dAdS7}{}\paragraph*{{M-theory on $AdS_7 \times S^4$ and 6d $(2,0)$-SCFT on M5 branes}}\label{6dAdS7} [[11-dimensional supergravity|M-theory]] on $AdS_7 \times S^4$ is supposed to have as holographic boundary the [[6d (2,0)-superconformal QFT]]. See there for references. \hypertarget{mtheory_on__and_chernsimons_on_m2_branes}{}\paragraph*{{M-theory on $AdS_4 \times S^7/\mathbb{Z}_k$ and Chern-Simons on M2 branes}}\label{mtheory_on__and_chernsimons_on_m2_branes} See [[ABJM theory]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[holographic entanglement entropy]] \item [[holographic principle of higher category theory]] \item [[firewall problem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The idea of the holographic principle originates in \begin{itemize}% \item [[Gerard `t Hooft]], \emph{Dimensional Reduction in Quantum Gravity} (\href{http://arxiv.org/abs/gr-qc/9310026}{gr-qc/9310026}). \end{itemize} \begin{itemize}% \item [[Leonard Susskind]], \emph{The World as a hologram} , J. Math. Phys. 36 (1995) 6377--6396, (\href{http://arxiv.org/abs/hep-th/9409089}{hep-th/9409089}) \end{itemize} A review is \begin{itemize}% \item R. Bousso, \emph{The holographic principle}, Rev. Mod. Phys. \textbf{74} (2002) 825-874, (\href{http://www.ams.org/mathscinet-getitem?mr=1925130}{MR2003m:83048}, \href{http://link.aps.org/doi/10.1103/RevModPhys.74.825}{doi}, \href{http://arxiv.org/abs/hep-th/0203101}{arXiv:hep-th/0203101}) \end{itemize} See also \begin{itemize}% \item \href{http://www-thphys.physics.ox.ac.uk/people/AndreiStarinets/oxford_holography_group/holography_seminar/group_members.html}{Oxford Holography Group}, \emph{\href{http://www-thphys.physics.ox.ac.uk/people/AndreiStarinets/oxford_holography_group/holography_seminar/material.html}{Background materian for holography}} \end{itemize} \hypertarget{adscft}{}\subsubsection*{{AdS/CFT}}\label{adscft} See the references at [[AdS/CFT correspondence]]. \hypertarget{ReferencesCS-CFT}{}\subsubsection*{{Chern-Simons / CFT}}\label{ReferencesCS-CFT} \hypertarget{on_the_level_of_action_functionals}{}\paragraph*{{On the level of action functionals}}\label{on_the_level_of_action_functionals} The identification of the [[space of quantum states]] of 3d $G$-[[Chern-Simons theory]] with the space of [[conformal blocks]] of the [[WZW model]] on $G$ is due to \begin{itemize}% \item [[Edward Witten]] \emph{Quantum Field Theory and the Jones Polynomial} Commun. Math. Phys. 121 (3) (1989) 351--399. MR0990772 (\href{http://projecteuclid.org/euclid.cmp/1104178138}{EUCLID}) \end{itemize} A review of the standard holographic relation between 3d $G$-[[Chern-Simons theory]] and the [[WZW model]] on $G$ is for instance around p. 30 of \begin{itemize}% \item [[Krzysztof Gawędzki]], \emph{Conformal field theory: a case study} (\href{http://arxiv.org/abs/hep-th/9904145}{arXiv:hep-th/9904145}) \end{itemize} Discussion of how [[gauge transformations]] of the [[action functional]] of [[Chern-Simons theory]] reproduce overe [[boundaries]] the action functional of the [[WZW model]] are for instance on p. 6 of \begin{itemize}% \item Giovanni Arcioni, [[Matthias Blau]], Martin O'Loughlin, \emph{On the boundary dynamics of Chern-Simons gravity} (\href{http://arxiv.org/abs/hep-th/0210089}{arXiv:0210089}) \end{itemize} (And many other references. ) \hypertarget{matching_of_spaces_of_states_to_conformal_blocks}{}\paragraph*{{Matching of spaces of states to conformal blocks}}\label{matching_of_spaces_of_states_to_conformal_blocks} The observation that the [[space of states]] in the [[geometric quantization]] of 3d [[Chern-Simons theory]] matches with the [[partition function]] of the [[WZW model]] is originally due to \begin{itemize}% \item [[Edward Witten]] \emph{Quantum Field Theory and the Jones Polynomial} Commun. Math. Phys. 121 (3) (1989) 351--399. MR0990772 (\href{http://projecteuclid.org/euclid.cmp/1104178138}{project EUCLID}) \end{itemize} A review is in section 5 of \begin{itemize}% \item [[Krzysztof Gawedzki]], \emph{Conformal field theory: a case study} (\href{http://arxiv.org/abs/hep-th/9904145}{arXiv:hep-th/9904145}) \end{itemize} \hypertarget{RTAnd2dCFT}{}\paragraph*{{Reshetikhin-Turaev 3d TQFT and rational 2d CFT}}\label{RTAnd2dCFT} Using the hypothesized relation between $G$-Chern-Simons [[TQFT]] to that given by the [[Reshetikhin-Turaev construction]] applied to the [[modular tensor category]] of $G$-[[loop group]] representations, a detailed discussion of the relation CS/WZW in given by the [[FFRS formalism]]. See there for more details One article that contains a survey of much of the story is \begin{itemize}% \item Jens Fjelstad, J\"u{}rgen Fuchs, [[Ingo Runkel]], [[Christoph Schweigert]], \emph{Uniqueness of open/closed rational CFT with given algebra of open states} (\href{http://arxiv.org/abs/hep-th/0612306}{arXiv:hep-th/0612306}) . \end{itemize} The isomorphism between the RT-theory modular functor and the CFT conformal blocks is also discussed in \begin{itemize}% \item [[Jørgen Andersen]], [[Kenji Ueno]], \emph{Construction of the Reshetikhin-Turaev TQFT from conformal field theory} (\href{http://arxiv.org/abs/1110.5027}{arXiv:1110.5027}) \end{itemize} Amplification of how the [[FRS formalism]] is inevitable once one adopts holography and [[QFT with defects]] is in \begin{itemize}% \item [[Anton Kapustin]], [[Natalia Saulina]], \emph{Surface operators in 3d TFT and 2d Rational CFT} in [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} AMS, 2011 \end{itemize} More along these lines is in \begin{itemize}% \item [[Jürgen Fuchs]], [[Christoph Schweigert]], [[Alessandro Valentino]], \emph{Bicategories for boundary conditions and for surface defects in 3-d TFT} (\href{http://arxiv.org/abs/1203.4568}{arXiv:1203.4568}) \end{itemize} \hypertarget{selfdual_higher_gauge_fields_and_higher_abelian_chernsimons}{}\paragraph*{{Self-dual higher gauge fields and higher abelian Chern-Simons}}\label{selfdual_higher_gauge_fields_and_higher_abelian_chernsimons} The idea of describing [[self-dual higher gauge theory]] by abelian Chern-Simons theory in one dimension higher originates in \begin{itemize}% \item [[Edward Witten]], \emph{Five-brane effective action in M-Theory}, J. Geom. Phys. \textbf{22} (1997), no. 2, 103--133, \href{http://arxiv.org/abs/hep-th/9610234}{hep-th/9610234} \item [[Edward Witten]], \emph{Duality relations among topological effects in string theory}, J. High Energy Phys. 2000, no. 5, Paper 31, 31 pp. \href{http://arxiv.org/abs/hep-th/9912086}{arXiv:hep-th/9912086}, \href{http://dx.doi.org/10.1088/1126-6708/2000/05/031}{doi} \end{itemize} More discussion of the general principle is in \begin{itemize}% \item Dmitriy Belov, [[Greg Moore]], \emph{Holographic action for the self-dual field}, \href{http://arxiv.org/abs/hep-th/0605038}{arXiv:hep-th/0605038} \end{itemize} A quick exposition of the basic idea is in \begin{itemize}% \item [[Jacques Distler]], \emph{Actions for self-dual gauge fields} (\href{http://golem.ph.utexas.edu/~distler/blog/archives/000809.html}{blog}) \end{itemize} The application of this to the description of type II [[string theory]] in 10-dimensions to 11-dimensional Chern-Simons theory is in the followup \begin{itemize}% \item Dmitriy Belov, [[Greg Moore]], \emph{Type II Actions from 11-Dimensional Chern-Simons Theories} (\href{http://arxiv.org/abs/hep-th/0611020}{arXiv}) \end{itemize} \hypertarget{poisson_modelamodel_and_quantum_mechanics}{}\paragraph*{{Poisson $\sigma$-model/A-model and quantum mechanics}}\label{poisson_modelamodel_and_quantum_mechanics} \begin{itemize}% \item [[Maxim Kontsevich]], \ldots{} \end{itemize} \begin{itemize}% \item [[Alberto Cattaneo]], [[Giovanni Felder]], \ldots{} \end{itemize} \begin{itemize}% \item [[Edward Witten]], \ldots{} \end{itemize} \hypertarget{3d_chernsimons_theory__2d_cft}{}\paragraph*{{3d Chern-Simons theory / 2d CFT}}\label{3d_chernsimons_theory__2d_cft} 3-dimensional [[Chern-Simons theory]] in the context of holography is discussed for instance in \begin{itemize}% \item Victor O. Rivelles, \emph{Holographic Principle and AdS/CFT Correspondence} (\href{http://arxiv.org/abs/hep-th/9912139}{arXiv}) \end{itemize} \hypertarget{chernsimonscft_in_adscft}{}\paragraph*{{Chern-Simons/CFT in AdS/CFT}}\label{chernsimonscft_in_adscft} In \begin{itemize}% \item [[Edward Witten]], \emph{AdS/CFT Correspondence And Topological Field Theory} JHEP 9812:012,1998 (\href{http://arxiv.org/abs/hep-th/9812012}{arXiv:hep-th/9812012}) \end{itemize} it is argued that in the [[AdS/CFT correspondence]] it is in fact just the Chern-Simon terms inside the corresponding [[supergravity]] theories whose states control the [[conformal block]]s of the dual [[CFT]]. So the CS/CFT correspondence is a part (a crucial part) of the AdS/CFT correspondence, at least for $AdS_5/CFT_4$ and $AdS_7/CFT_6$. \hypertarget{black_hole__cft_correspondence}{}\subsubsection*{{Black hole / CFT correspondence}}\label{black_hole__cft_correspondence} \begin{itemize}% \item Monica Guica, Thomas Hartman, Wei Song, [[Andrew Strominger]], \emph{The Kerr/CFT Correspondence} (\href{http://arxiv.org/abs/0809.4266}{arXiv:0809.4266}) \item Alejandra Castro, Alexander Maloney, [[Andrew Strominger]], \emph{Hidden Conformal Symmetry of the Kerr Black Hole} (\href{http://arxiv.org/abs/1004.0996}{arXiv:1004.0996}) \end{itemize} \hypertarget{general_abstract_formulation}{}\subsubsection*{{General abstract formulation}}\label{general_abstract_formulation} An identification of boundary conditions and [[QFT with defects|defects]] as [[natural transformation]]s between higher dimensional [[FQFT]]s is discussed in \begin{itemize}% \item [[Chris Schommer-Pries]], \emph{Topological defects and classifying local topological field theories in low dimension} ([[SchommerPriesDefects.pdf:file]]) \end{itemize} See [[holographic principle of higher category theory]] for more on this. Further discussion of formalization in [[extended TQFT]] is in \begin{itemize}% \item [[Dan Freed]], \emph{[[4-3-2 8-7-6]]}, talk at \emph{\href{https://people.maths.ox.ac.uk/tillmann/ASPECTS.html}{ASPECTS of Topology}} Dec 2012 \end{itemize} [[!redirects holographic duality]] [[!redirects holography]] [[!redirects holographic dual]] [[!redirects holographic duals]] \end{document}