\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{holographic principle of higher category theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{functorial_quantum_field_theory}{}\paragraph*{{Functorial quantum field theory}}\label{functorial_quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{the_general_abstract_principle}{The general abstract principle}\dotfill \pageref*{the_general_abstract_principle} \linebreak \noindent\hyperlink{examples_in_low_dimension}{Examples in low dimension}\dotfill \pageref*{examples_in_low_dimension} \linebreak \noindent\hyperlink{Formalizations}{Formalizations}\dotfill \pageref*{Formalizations} \linebreak \noindent\hyperlink{ApplicationsInQFT}{Application in functorial QFT}\dotfill \pageref*{ApplicationsInQFT} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{the_general_abstract_principle}{}\subsection*{{The general abstract principle}}\label{the_general_abstract_principle} In [[higher category theory]] it is easy to verify that a (strict) $1$-[[transfor]]mation $\lambda$ between [[n-functor]]s $F_1,F_2 : C \to D$ between [[strict n-categories]] $C$ and $D$ \begin{displaymath} \lambda : F_1 \Rightarrow F_2 \end{displaymath} is determined uniquely by an $(n-1)$-functor \begin{displaymath} \eta : C_{(n-1)} \to D^{\Delta^1} \end{displaymath} on the strict $(n-1)$-category obtained from $C$ by discarding the [[n-morphism]]s. (Of course, not every such $(n-1)$-functor determines such a transformation; the missing condition is ``naturality'' at the top level.) Analogous statements hold for general (weak) [[n-categories]], although they are more complicated to formulate; see below. As with various other easy facts about [[category theory]], these become interesting statements when realized in a concrete context where certain structures are modeled by $n$-[[functor categories]] for all $n$. \hypertarget{examples_in_low_dimension}{}\subsubsection*{{Examples in low dimension}}\label{examples_in_low_dimension} We spell out explicitly the $(n-1)$-functorial nature of transformation for low values of $n$. \begin{itemize}% \item \textbf{$(n=1)$} -- A [[natural transformation]] $\eta$ between [[functor]]s $F_1,F_2 : C \to D$ between ordinary [[categories]] consists of components which are given by a [[function]] \begin{displaymath} \eta : Obj(C) \to Mor(D) \end{displaymath} that sends [[object]]s of $C$ to [[morphism]]s in $D$ \begin{displaymath} \eta : x \mapsto ( F_1(x) \stackrel{\eta(x)}{\to} F_2(x)) \,. \end{displaymath} Saying that such a function extends to a functor $C \to Arr(D)$: \begin{displaymath} \eta : \left( \itexarray{ x \\ \downarrow^{\mathrlap{\gamma_1}} \\ y \\ \downarrow^{\mathrlap{\gamma_2}} \\ z } \right) \;\;\; \mapsto \;\;\; \left( \itexarray{ F_1(x) &\stackrel{\eta(x)}{\to}& F_2(x) \\ {}^{\mathllap{F_1(f)}}\downarrow &=& \downarrow^{\mathrlap{F_2(f)}} \\ F_1(y) &\stackrel{\eta(y)}{\to}& F_2(y) \\ {}^{\mathllap{F_1(g)}}\downarrow &=& \downarrow^{\mathrlap{F_2(g)}} \\ F_1(z) &\underset{\eta(z)}{\to}& F_2(z) } \right) \,. \end{displaymath} is equivalent to saying that these components form a natural transformation. Since there are no nontrivial [[2-morphism]]s in $D$---in other words, the forgetful functor $Arr(D) \to D\times D$ is faithful---such an extension to a functor is necessarily unique. So we may regard the component function of $\eta$ as a [[0-functor]] \begin{displaymath} \eta : \mathbf{sk}_0 C = Obj(C) \to D^{\Delta[1]} = Arr(D) \end{displaymath} from the [[discrete category]] on the set of objects of $C$ to the [[arrow category]] of $D$. \item \textbf{$(n=2)$} A [[pseudonatural transformation]] $\eta$ between (strict, say, for ease of of notation) [[2-functor]]s $F_1,F_2 : C \to D$ between ([[strict 2-category|strict]], for simplicity) [[2-categories]] is in components a 1-[[functor]] that functorially assigns pseudonaturality squares: \begin{displaymath} \eta : \left( \itexarray{ x \\ \downarrow^{\mathrlap{\gamma_1}} \\ y \\ \downarrow^{\mathrlap{\gamma_2}} \\ z } \right) \;\;\; \mapsto \;\;\; \left( \itexarray{ F_1(x) &\stackrel{\eta(x)}{\to}& F_2(x) \\ {}^{\mathllap{F_1(f)}}\downarrow &\swArrow_{\eta(f)}& \downarrow^{\mathrlap{F_2(f)}} \\ F_1(y) &\stackrel{\eta(y)}{\to}& F_2(y) \\ {}^{\mathllap{F_1(g)}}\downarrow &\swArrow_{\eta(g)}& \downarrow^{\mathrlap{F_2(g)}} \\ F_1(z) &\underset{\eta(z)}{\to}& F_2(z) } \right) \end{displaymath} We may regard this as a 1-functor \begin{displaymath} \eta : \mathbf{sk}_1 C \to Arr(D) \end{displaymath} from the underlying 1-category of $C$ to the arrow category of $D$, whose objects are morphisms in $D$, whose morphisms are squares in $D$, and whose composition is [[pasting]] of such squares (see [[double category]] for details). Again, saying that this 1-functor extends to a 2-functor from $C$ to the arrow 2-category of $D$ says precisely that these components form a pseudonatural transformation, and any such extension is unique when it exists since the forgetful 2-functor $Arr(D)\to D\times D$ is locally faithful. \item \textbf{$(n=3)$} -- A transformation between 3-functors is in components a [[2-functor]] that sends [[2-morphism]]s in $C$ to cyclinders in $D$. This is shown in the $(n=3)$-row of the following diagram The pseudonaturality condition on $\eta$, which is componentwise the equation and the fact that there are only identity 3-morphisms in $D$ implies that this already uniquely extends to a 2-functor \begin{displaymath} \eta : C \to Arr(D) \,, \end{displaymath} where on the right we have the 2-category whose objects are morphisms in $D$, whose morphisms are squares in $D$ and whose 2-morphisms are cylinders bounded by these squares. \end{itemize} \hypertarget{Formalizations}{}\subsubsection*{{Formalizations}}\label{Formalizations} For [[strict ∞-categories]] modeled as globular [[strict ∞-categories]] we have the following simple statement of the general principle. \begin{uLemma} For $C,D \in Str n Cat$ and $F_1, F_2 : C \to D$ two strict $n$-functors, [[transfor]]mations $\eta : F_1 \Rightarrow F_2$ which are in components given by $n$-functors \begin{displaymath} \eta : C \to D^{G_1} \end{displaymath} are entirely specified by their underlying $(n-1)$-functors \begin{displaymath} \eta : C_{n-1} \to D^{G_1} \,. \end{displaymath} \end{uLemma} For weak $n$-categories analogous statements hold, but may have a less straightforward formulation. What is always true is that the transformation $\eta$ is specified by its values on $(n-1)$-morphisms (and below) and will be functorial in a weak sense on these, but these $(n-1)$-morphisms and below will usually not form an $(n-1)$-category themselves, since they will compose coherently only up to $n$-morphisms. One way to bring the general case into the above simple form is to invoke models by [[semi-strict ∞-categories]]. By [[Simpson's conjecture]], every [[∞-category]] has a model in which everything is strict except possibly the [[identities]] and their unitalness [[coherence law]]s. This means that if $C$ is such a semistrict model of an $n$-category, then $C_{n-1}$ is an $(n-1)$-[[semicategory]] and the transformation \begin{displaymath} \eta : C_{n-1} \to D^{\Delta[1]} \end{displaymath} is an $n$-functor on that. (By naturalness we have that $\eta$ is guaranteed also to respect the weak identities in $C$ in some way, but that way is not so easy to formalize.) More generally, for any algebraic notion of weak $n$-category, there is a corresponding algebraic ``$(n-1)$-dimensional'' structure containing only the operations on $(n-1)$-dimensional cells and below in the given notion of weak $n$-category. This is not in general a notion of weak $(n-1)$-category, but it may suffice to formulate the above principle precisely. If the starting notion of $n$-category had strict associativity and interchange, then the resulting $(n-1)$-dimensional structure will be a notion of $(n-1)$-semicategory. \hypertarget{ApplicationsInQFT}{}\subsection*{{Application in functorial QFT}}\label{ApplicationsInQFT} For instance in [[FQFT]] one models $n$-dimensional [[topological quantum field theories]] as [[(∞,n)-functor]]s on a flavor of an [[(∞,n)-category of cobordisms]] \begin{displaymath} Z : Bord_{n}^S \to \mathcal{C} \end{displaymath} (where the superscript $S$ is to remind us that this may be [[cobordism]]s equipped with some extra [[stuff, structure, property|structure]]). It follows that with $Z_1, Z_2$ two such $n$-dimensional QFTs, a transformation $B : Z_1 \Rightarrow Z_2$ does look in components itself like an QFT -- which is \emph{twisted} by $Z_1$ and $Z_2$ in some sense (see \href{}{below}) -- , but in dimension $(n-1)$. More specifically, if $\mathcal{C}$ is a [[symmetric monoidal (∞,n)-category]] with tensor unit $1$ there is the trivial FQFT $\mathbf{1}$ given by the constant $(\infty,n)$-functor $\mathbf{1} : Bord_n \to \mathcal{C}$. One can see in examples that the transformations \begin{displaymath} B : Z \Rightarrow \mathbf{1} \end{displaymath} encode \emph{boundary conditions} on cobordisms with boundary for the theory $Z$. Conversely, this means that one discovers on the boundary of the $n$-dimensional QFT $Z$ the $(n-1)$-dimensional QFT $B$. Or rather, this is the case if instead of [[natural transformation]]s $\eta$ one uses [[canonical transformation]]s: those component maps $\eta : C_{n-1} \to D^{I}$ that are required to be natural only with respect to the invertible $(n-1)$-morphisms in $C$. For the case of $n=2$ and 2-dimensional cobordisms without any extra structure, a detailed version of these statements are given in (\hyperlink{SchommerPries}{Schommer-Pries}). For $n=3$ and the holographic relation between [[Reshetikhin?Turaev model]] and rational 2d [[CFT]] in [[FFRS-formalism]] some remarks are in (\hyperlink{Schreiber}{Schreiber}). In the study of [[quantum field theory]] and [[string theory]] such kinds of relations between $n$-dimensional QFTs and $(n-1)$-dimensional QFTs on their boundary have been called the \emph{[[holographic principle]]} . The degree to which this principle has been formalized and the degree to which this formalization has been verified varies greatly. Examples include \begin{itemize}% \item The boundary theory of 3-dimensional [[Chern-Simons theory]] is the 2-dimensional [[WZW-model]]. This is probably the oldest known holographic relation between QFTs. \item In the 2-d QFT called the [[Poisson sigma-model]] with target the [[Poisson Lie algebroid]] coming from a [[Poisson manifold]] the boundary 3-point function computes the [[deformation quantization]] of the classical system described by that Poisson manifold. (This was in fact used implicitly by [[Maxim Kontsevich]] to solve deformation quantization. The relation to the Poisson sigma-model was made explicit by Cattaneo and Felder.) \item The boundary theory of the 2-dimensional [[A-model]] QFT on a target space that is a complexification of a classical [[phase space]] is the 1-dimensional QFT (= [[quantum mechanics]]) that is the [[geometric quantization]] of this phase space. This is described at [[quantization via the A-model]]. \item The [[AdS/CFT correspondence]] conjectures specifically a holographic relation between [[quantum gravity]] on a 10-dimensional asymptotically [[anti-de Sitter spacetime]] and a superconformal [[Yang-Mills theory]] on its asymptotic boundary. More generally, this specific construction is supposed to apply, with variations, in many different dimensions. \end{itemize} See also [[higher category theory and physics]]. \hypertarget{References}{}\subsection*{{References}}\label{References} The discussion of transformations between 2d FQFTs and how these encode boundary 1-[[brane]]s and defect 1-[[bi-brane]]s is in \begin{itemize}% \item [[Chris Schommer-Pries]], \emph{Topological defects and classifying local topological field theories in low dimension} ([[SchommerPriesDefects.pdf:file]]) \end{itemize} from slide 65 on. A formally comparatively well understood case of QFT holography is the relation between 3-dimensional [[Chern-Simons theory]] and the 2-dimensional [[WZW-model]]. This is formalized by the [[Reshetikhin?Turaev model]] on the 3-dimensional side and the [[Fuchs-Runkel-Schweigert construction]] on the 2-dimensional side. Remarks on how the relation between Reshitikhin-Turaev and FSR seem to have an interpretation in terms transformations between 3-functors are at \begin{itemize}% \item [[Urs Schreiber]], \emph{Towards 2-functorial CFT} (\href{http://golem.ph.utexas.edu/category/2007/08/dbranes_from_tin_cans_part_x.html}{blog entry}) \end{itemize} There is it discussed how the basic [[string diagram]] that in FSR formalism encodes a field insertion on, possibly, a defect line and encodes the disk amplittudes of the CFT is the string diagram Poincar\'e{}-dual to the cylinder in a 3-category of [[n-vector space|3-vector space]]s. For references on the [[holographic principle]] in QFT, see there. \end{document}