\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{holomorphic vector bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_complex_algebraic_vector_bundles}{As complex algebraic vector bundles}\dotfill \pageref*{as_complex_algebraic_vector_bundles} \linebreak \noindent\hyperlink{AsComplexVectorBundlesWithHolomorphicFlatConnection}{As complex vector bundles with holomorphically flat connection}\dotfill \pageref*{AsComplexVectorBundlesWithHolomorphicFlatConnection} \linebreak \noindent\hyperlink{OverRiemannSurfaces}{Over Riemann surfaces}\dotfill \pageref*{OverRiemannSurfaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_complex_vector_bundles_with_flat_holomorphic_connection}{Relation to complex vector bundles with flat holomorphic connection}\dotfill \pageref*{relation_to_complex_vector_bundles_with_flat_holomorphic_connection} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[complex numbers|complex]] [[vector bundle]] over a [[complex manifold]] such that it admits [[transition functions]] that are [[holomorphic functions]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_complex_algebraic_vector_bundles}{}\subsubsection*{{As complex algebraic vector bundles}}\label{as_complex_algebraic_vector_bundles} By the [[GAGA]]-principle holomorphic vector bundles and more generally analytic [[coherent sheaves]] over a [[projective variety|projective]] [[smooth variety|smooth]] [[complex variety]] coincide with complex [[algebraic vector bundles]]/[[coherent sheaves]]. \hypertarget{AsComplexVectorBundlesWithHolomorphicFlatConnection}{}\subsubsection*{{As complex vector bundles with holomorphically flat connection}}\label{AsComplexVectorBundlesWithHolomorphicFlatConnection} \begin{theorem} \label{KoszulMalgrangeTheorem}\hypertarget{KoszulMalgrangeTheorem}{} \textbf{([[Koszul-Malgrange theorem]])} Holomorphic vector bundles over a [[complex manifold]] are equivalently [[complex vector bundles]] which are equipped with a holomorphically [[flat connection]] (hence a connection whose holomorphic component vanishes). Under this identification the [[Dolbeault operator]] $\bar \partial$ acting on the [[sections]] of the holomorphic vector bundle is identified with the holomorphic component of the [[covariant derivative]] of the given connection. The analogous statement is true for generalization of vector bundles to [[chain complexes]] of [[module sheaves]] with [[coherent cohomology]]. \end{theorem} For [[complex vector bundles]] over [[complex varieties]] this statement is due to [[Alexander Grothendieck]] and (\hyperlink{KoszulMalgrange58}{Koszul-Malgrange 58}), recalled for instance as (\hyperlink{Pali06}{Pali 06, theorem 1}). It may be understood as a special case of the [[Newlander-Nirenberg theorem]], see (\hyperlink{DelzantPy10}{Delzant-Py 10, section 6}), which also generalises the proof to [[infinite-dimensional manifold|infinite-dimensional]] vector bundles. Over [[Riemann surfaces]], see \hyperlink{OverRiemannSurfaces}{below}, the statement was highlighted in (\hyperlink{AtiyahBott83}{Atiyah-Bott 83}) in the context of the [[Narasimhan-Seshadri theorem]]. The generalization from [[vector bundles]] to [[coherent sheaves]] is due to (\hyperlink{Pali06}{Pali 06}). In the genrality of [[(∞,1)-categories of chain complexes]] ([[dg-categories]]) of holomorphic vector bundles the statement is discussed in (\hyperlink{Block05}{Block 05}). \begin{remark} \label{}\hypertarget{}{} The equivalence in theorem \ref{KoszulMalgrangeTheorem} serves to relate a fair bit of [[differential geometry]]/[[differential cohomology]] with constructions in [[algebraic geometry]]. For instance [[intermediate Jacobians]] arise in [[differential geometry]] and [[quantum field theory]] as [[moduli spaces of flat connections]] equipped with [[symplectic structure]] and [[Kähler polarization]], all of which in terms of [[algebraic geometry]] directly comes down [[moduli spaces]] of [[abelian sheaf cohomology]] with [[coefficients]] in the [[structure sheaf]] (and/or some variants of that, under the exponential exact sequence). \end{remark} \hypertarget{OverRiemannSurfaces}{}\subsubsection*{{Over Riemann surfaces}}\label{OverRiemannSurfaces} Over [[Riemann surfaces]] holomorphic vector bundles are a central part of the theory of the [[moduli space of flat connections]]. See at \emph{[[Narasimhan-Seshadri theorem]]}. A key observation here is (\hyperlink{AtiyahBott83}{Atiyah-Bott 83, section 7}), that a $U(n)$-[[principal connection]] induces a holomorphic structure on the [[associated bundle|associated]] [[complex vector bundle]] by taking the $(0,1)$-part of the connection 1-form as the [[Dolbeault operator]]. For review of the statement and its proof see (\hyperlink{Evans}{Evans, lecture 10}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Kodaira vanishing theorem]] \item [[Chern connection]] \item [[Kähler polarization]] \item [[stable vector bundle]] \item [[moduli space of bundles]] \item [[Deligne line bundle]] \item [[Higgs bundle]] \item [[algebraic line bundle]] \item [[holomorphic line 2-bundle]], [[holomorphic line n-bundle]] \item [[complex analytic stack]] \item [[pseudoholomorphic vector bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Holomorphic_vector_bundle}{holomorphic vector bundle}} \end{itemize} \hypertarget{relation_to_complex_vector_bundles_with_flat_holomorphic_connection}{}\subsubsection*{{Relation to complex vector bundles with flat holomorphic connection}}\label{relation_to_complex_vector_bundles_with_flat_holomorphic_connection} The classical statement of theorem \ref{KoszulMalgrangeTheorem} is due to [[Alexander Grothendieck]] and \begin{itemize}% \item [[Jean-Louis Koszul]], [[Bernard Malgrange]], \emph{Sur certaine structures fibr\'e{}es complexes}, arch. mat, vol IX, 1958 \end{itemize} Over [[Riemann surfaces]] and in the context of the [[moduli space of flat connections]]: \begin{itemize}% \item [[Michael Atiyah]], [[Raoul Bott]], \emph{The Yang-Mills equations over Riemann surfaces}, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 308, No. 1505 (Mar. 17, 1983), pp. 523-615 (\href{http://www.jstor.org/stable/37156}{jstor}, \href{http://math.stackexchange.com/a/295505/58526}{lighning summary}) \item [[Jonathan Evans]], \emph{\href{http://www.homepages.ucl.ac.uk/~ucahjde/yangmills.htm}{Aspects of Yang-Mills theory}}, lecture notes, (\href{http://www.homepages.ucl.ac.uk/~ucahjde/YM-lectures/lecture10.pdf}{lecture 10}, \href{http://www.homepages.ucl.ac.uk/~ucahjde/YM-lectures/lecture11.pdf}{lecture 11}, \href{http://www.homepages.ucl.ac.uk/~ucahjde/YM-lectures/lecture12.pdf}{lecture 12}) \end{itemize} Generalization to [[coherent sheaves]] is due to \begin{itemize}% \item N. Pali, \emph{Faisceaux $\bar \partial$-cohrents sur les vari\'e{}t\'e{} complexes} ( \emph{$\bar \partial$-Coherent sheaves on complex manifolds) Math. Ann. 336 (2006), no. 3, 571--615 (\href{http://arxiv.org/abs/math/0305422}{arXiv:math/0305422})} \end{itemize} Further Generalization to [[chain complexes]] of holomorphic vector bundles is discussed in \begin{itemize}% \item [[Jonathan Block]], \emph{Duality and equivalence of module categories in noncommutative geometry I} (\href{http://arxiv.org/abs/math/0509284}{arXiv:0509284}) \end{itemize} in terms of [[Lie infinity-algebroid representations]] of the holomorphic [[tangent Lie algebroid]]. Generalization to [[infinite-dimensional manifold|infinite-dimensional]] vector bundles is in \begin{itemize}% \item Thomas Delzant, Pierre Py, \emph{K\"a{}hler groups, real hyperbolic spaces and the Cremona group}, Compositio Math. 148, no. 1 (2012), 153--184 (\href{http://arxiv.org/abs/1012.1585}{arXiv:1012.1585}) \end{itemize} [[!redirects holomorphic vector bundles]] [[!redirects holomorphic line bundle]] [[!redirects holomorphic line bundles]] [[!redirects holomorphic section]] [[!redirects holomorphic sections]] \end{document}