\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{hom-object in a quasi-category} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Between any two [[objects]] $x,y$ in an [[(∞,1)-category]] $C$ there is an [[∞-groupoid]] of morphisms. It is well-defined up to equivalence. When the $(\infty,1)$-category is incarnated as a [[quasi-category]], there are several explicit ways to extract representatives of this [[hom-object]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a [[quasi-category]] (or any [[simplicial set]]), and $x,y \in C_0$ any two objects. Then write \begin{displaymath} Hom_C(x,y) := [\tau(C)(x,y)] \in Ho(sSet_{Quillen}) \simeq Ho(\infty Grpd) \,, \end{displaymath} where \begin{itemize}% \item $\tau$ is the [[left adjoint]] to the [[homotopy coherent nerve]]; \item $\tau(C)$ is accordingly the [[simplicially enriched category]] incarnation of $C$, \item $\tau(C)(x,y)$ is the [[sSet]]-[[hom-object]] of that $sSet$-[[enriched category]]; \item $[\tau(C)(x,y)]$ is the equivalence class of this object. \end{itemize} This defines $Hom_C(x,y)$ as an equivalence class of $\infty$-groupoids, but at the same time defines a particular representative: if $C$ is a [[quasi-category]] then $\tau(C)(x,y)$ is a [[Kan complex]] that represents this class. This is useful for many purposes, but $\tau(C)$ is usually hard to compute explicitly. The following three other definitions of representatives of $Hom_C(x,y)$ are often useful. \textbf{Definition} For $C$ and $x,y$ as above, write \begin{displaymath} Hom_C^{L R}(x,y) := \{x\} \times_C C^{\Delta[1]} \times_C \{y\} \end{displaymath} for the [[pullback]] \begin{displaymath} \itexarray{ \{x\} \times_C C^{\Delta[1]} \times_C \{y\} &\to& C^{\Delta[1]} \\ \downarrow && \downarrow^{\mathrlap{d_1 \times d_0}} \\ \{x\} \times \{y\} &\to& C \times C } \end{displaymath} in [[sSet]] of the [[path object]] $C^{\Delta[1]}$ (the cartesian [[internal hom]] in [[sSet]] with the 1-[[simplex]] $\Delta[1]$) . Write \begin{displaymath} Hom^R_C(x,y) \in sSet \end{displaymath} for the simplicial set whose $n$-[[simplex|simplices]] are defined to be those morphisms $\sigma : \Delta[n+1] \to C$ such that the restriction to $\Delta\{0, \cdots, n\}$ is the constant map to $x$ and the restriction to $\Delta\{n+1\}$ is the map to $y$. Analogously, write \begin{displaymath} Hom^L_C(x,y) \in sSet \end{displaymath} for the simplicial set whose $n$-simplices are morphisms $\Delta[n+1] \to X$ which restrict to $x$ on $\{0\}$ and are constant on $y$ when restricted to $\{1, \cdots, n+1\}$. \textbf{Remark} The 1-cells in $Hom_C^R(x,y)$, $Hom_C^L(x,y)$ and $Hom_C^{L R}(x,y)$ are 2-[[globes]] in $C$. The 2-cells are commuting squares of vertical composites of 2-globes forming a 3-globe. Equivalently this may be understood in terms of fibers of [[over quasi-categories]]. Recall that for $p : K \to C$ a morphism, we have the [[over quasi-category]] $C_{/p}$ defined by \begin{displaymath} (C_{/p})_n := Hom(\Delta[n],C^{/p}) := Hom_p(\Delta[n] \star K, C) \,, \end{displaymath} where on the right we have the set of morphisms in $sSet$ out of the [[join of simplicial sets]] that restrict on $K$ to $p$. This comes with the canonical projection $C^{p/} \to C$, which sends $(\Delta[n] \star K \to C)$ to the restriction $(\Delta[n] \to \Delta[n] \star K \to C)$. There is also the other, equivalent, definition $C^{/p}$ of [[over quasi-category]], defined using the other, equivalent, definition $\diamondsuit$ of [[join of quasi-categories]] by \begin{displaymath} (C^{/p})_n := Hom_{K/sSet}( \Delta[n] \diamondsuit K, C) \,. \end{displaymath} \textbf{Obervation} We have \begin{displaymath} Hom^R_C(x,y) = C_{/{y}} \times_C \{x\} \,, \end{displaymath} where on the right we have the [[pullback]] in [[sSet]] in the diagram \begin{displaymath} \itexarray{ C_{/{y}} \times_C \{x\} &\to& C_{/y} \\ \downarrow && \downarrow \\ \{x\} &\to& C } \end{displaymath} and the equality sign denotes an [[isomorphism]] in [[sSet]]. And we have \begin{displaymath} Hom_C^{L R}(x,y) = C^{/y} \times_C \{x\} \end{displaymath} \textbf{Proof} For the first statement use the identification of $\Delta[n+1]$ with the [[join of simplicial sets]] $\Delta[n] \star \Delta[0]$, as described there. For the second statement use that $\Delta[n] \diamondsuit \Delta[0]$ is the colimit $\Delta[n+1]$ in \begin{displaymath} \itexarray{ && \Delta[n] \times \Delta[0] &\to & \Delta[0] \\ && \downarrow &\downarrow& \\ \Delta[n] \times \Delta[0] &\to& C \times \Delta[0] \times \Delta[1] &\to& \Delta[n+1] \\ \downarrow && \downarrow && \downarrow \\ \Delta[n] &\to& C \times \Delta[1] &\to& \Delta[n+1] } \,, \end{displaymath} so that \begin{displaymath} C^{/y} = C^{\Delta[1]} \times_C \{y\} \end{displaymath} because \begin{displaymath} (C^{/y})_n = Hom_{\Delta[0]/sSet}( \Delta[n]\times \Delta[1] \coprod_{\Delta[1] \times \Delta[0]} \Delta[0], C) = Hom(\Delta[n] \times \Delta[1], C) \times_{Hom(\Delta[1],C)} \{y\} = (C^{\Delta[1]} \times \{y\})_n \,. \end{displaymath} \textbf{Remark} One advantage of the representative $\tau(C)(c,y)$ of $Hom_C(x,y)$ is that, by the fact that $\tau(C)$ is an [[sSet]]-[[enriched category]], there is a strict composition operation \begin{displaymath} \tau(C)(x,y) \times \tau(C)(y,z) \to \tau(C)(x,z) \,. \end{displaymath} This is not available for the $Hom_C^R(x,y)$ and $Hom_C^L(x,y)$ \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \textbf{Proposition} If the simplicial set $C$ is a [[quasi-category]], then $Hom_C^R(x,y)$ is a [[Kan complex]]. \textbf{Proof} This is [[Higher Topos Theory|HTT, prop 1.2.2.3]]. From the definition it is clear that $Hom_C^R(x,y)$ has fillers for all inner and right outer horns $\Lambda[n]_{1 \leq i \leq n}$, because these yield inner horns in $\Delta[n+1] = \Delta[n] \star \Delta[0]$. The claim follows then with the fact that every [[right fibration]] over the point is a Kan complex, as described there. \textbf{Proposition} If $C$ is a [[quasi-category]] then the canonical inclusions \begin{displaymath} Hom_C^R(x,y) \to Hom_C^{L R}(x,y) \leftarrow Hom_C^L(x,y) \end{displaymath} are [[homotopy equivalences]] of [[Kan complexes]]. \textbf{Proof} This is [[Higher Topos Theory|HTT, cor. 4.2.1.7]]. As described at [[join of quasi-categories]] the canonical morphism $C_{/y} \to C^{/y}$ is an equivalence of quasi-categories. So for the statement for $Hom_C^R(x,y)$ it suffices to show that this induces an equivalence of fibers over $C$. This follows from the fact that both $C_{/y} \to C$ and $C^{/y} \to C$ are [[Cartesian fibrations]]. See [[Cartesian fibrations]] for these statements. This is [[Higher Topos Theory|HTT, prop. 3.3.1.5. (2)]]. The statement for $Hom_C^L(x,y)$ follows dually. \end{document}