\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy 2-type} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{classification}{Classification}\dotfill \pageref*{classification} \linebreak \noindent\hyperlink{homotopy_types_as_crossed_modules}{Homotopy $2$-types as crossed modules}\dotfill \pageref*{homotopy_types_as_crossed_modules} \linebreak \noindent\hyperlink{homotopy_types_as_simplicial_groupoids}{Homotopy $2$-types as simplicial group(oid)s}\dotfill \pageref*{homotopy_types_as_simplicial_groupoids} \linebreak \noindent\hyperlink{homotopy_types_as_groupoids}{Homotopy $2$-types as $2$-groupoids}\dotfill \pageref*{homotopy_types_as_groupoids} \linebreak \noindent\hyperlink{homotopy_2types_as_double_groupoids}{Homotopy 2-types as double groupoids}\dotfill \pageref*{homotopy_2types_as_double_groupoids} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A homotopy $2$-type is a view of a space where we consider its properties only up to the $2$nd [[homotopy group]] $\pi_2$. To make this precise, we look at maps that `see' invariants in dimensions 0,1, and 2. These are the 2-equivalences: \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A continuous map $X \to Y$ is a \textbf{homotopy $2$-equivalence} if it induces isomorphisms on $\pi_i$ for $i = 0, 1, 2$ at each basepoint. Two spaces share the same \textbf{homotopy $2$-type} if they are linked by a zig-zag chain of homotopy $2$-equivalences. For any `nice' space $X$, you can kill its homotopy groups in higher dimensions by attaching cells, thus constructing a new space $Y$ so that the inclusion of $X$ into $Y$ is a homotopy $2$-equivalence; up to (weak) [[homotopy equivalence]], the result is the same for any space with the same homotopy $2$-type. Accordingly, a \textbf{homotopy $2$-type} may alternatively be defined as a space with trivial $\pi_i$ for $i \gt 2$, or as the unique (weak) [[homotopy type]] of such a space, or as its fundamental $\infty$-[[fundamental infinity-groupoid|groupoid]] (which will be a $2$-[[2-groupoid|groupoid]]). See the general discussion in [[homotopy n-type]]. \hypertarget{classification}{}\subsection*{{Classification}}\label{classification} Homotopy $2$-types can be classified by various different types of algebraic data. \hypertarget{homotopy_types_as_crossed_modules}{}\subsubsection*{{Homotopy $2$-types as crossed modules}}\label{homotopy_types_as_crossed_modules} Homotopy $2$-types can be classified up to weak homotopy type by [[crossed module]]s of groupoids. These are the $2$-truncated versions of [[crossed complex]]es. Such a $C$ consists of a morphism \begin{displaymath} \delta: C_2 \to C_1 \end{displaymath} of [[groupoid]]s with object set $C_0$ such that $C_2$ is totally disconnected, i.e. is a family of groups $C_2(x), x \in C_0$. Further the groupoid $C_1$ operates on this family of groups so that (using right operations) if $a: x \to y$ in $C_1$ and $u \in C_2(x)$ then $u^a \in C(y)$; and the usual rules for an operation are satisfied, namely $(uv)^a=u^a v^a$, $u^1=u$, $(u^a)^b=u^{a b}$ when these are defined. Further the two basic crossed module rules hold: CM1) $\delta(u^a)= a^{-1} (\delta u) a$; CM2) $v^{-1} u v = u ^{\delta v}$; for all $a \in C_1, u,v \in C_2$ when the rules make sense. Such a crossed module may be extended to a crossed complex $sk^2 C$ by adding trivial elements in dimensions higher than 2. Hence there is a simplicial [[nerve]] $N^\Delta C$ which in dimension $n$ is \begin{displaymath} Crs(\Pi (\Delta^n_*), sk^2 C). \end{displaymath} The geometric realisation of this is the [[classifying space]] $BC$. Its first and second homotopy groups at $x \in C_0$ are the cokernel and kernel of $\delta: C_2(x) \to C_1(x,x)$. Its components are those of the groupoid $C_1$. All other homotopy groups are trivial. If $X$ is a CW-complex then there is a bijection of homotopy classes \begin{displaymath} [X,BC] \cong [\Pi X_*, sk^2 C], \end{displaymath} and hence there is a map $X \to B(cotr^2 \Pi X_*)$ inducing isomorphisms of homotopy groups in dimensions 1 and 2. Here the cotruncation $cotr^n D$ of a general crossed complex $D$ agree with $D$ up to dimension $(n-1)$, is $Cok \delta_{n+1}$ in dimension $n$, and is trivial in higher dimensions. It is in this sense that crossed modules of groupoids classify weak homotopy $2$-types. The category $Crs^2$ of such crossed modules of groupoids is equivalent to that of strict [[2-groupoid]]s. Further, $Crs^2$ is [[closed monoidal category|monoidal closed]]: \begin{displaymath} Crs^2(C \otimes D, E) \cong Crs^2(C, CRS^2(D,E)) \end{displaymath} and with a unit interval object $I$ so that (left) homotopies are determined as morphisms $Crs^2(I \otimes D,E)$ or as elements of $CRS^2(D,E)_1$. \hypertarget{homotopy_types_as_simplicial_groupoids}{}\subsubsection*{{Homotopy $2$-types as simplicial group(oid)s}}\label{homotopy_types_as_simplicial_groupoids} As a crossed module give rise to an internal groupoid in the category of groups (or groupoids), we can take the nerve of that structure and get a simplicial group (or [[simplicial groupoid|simplicially enriched groupoid]]). From a simplicial group(oid), $G$, one can define a simplicial set called the classifying space $\overline{W}G$ of the simplicial group, $G$, for which construction see [[simplicial group]]. We thus can start with a crossed module $C$ form a simplicial group and then take $\overline{W}$ of that to get another model of $\mathcal{B}C$. \hypertarget{homotopy_types_as_groupoids}{}\subsubsection*{{Homotopy $2$-types as $2$-groupoids}}\label{homotopy_types_as_groupoids} With respect to the standard [[homotopy theory]]-structure on [[2-groupoids]] ([[2-truncated]] [[infinity-groupoids]]) these are equivalent to homotopy 2-types. See at \emph{[[homotopy hypothesis]]} for more on this. \hypertarget{homotopy_2types_as_double_groupoids}{}\subsubsection*{{Homotopy 2-types as double groupoids}}\label{homotopy_2types_as_double_groupoids} see \begin{itemize}% \item [[Antonio Martínez Cegarra]]; Benjamn A. Heredia ; Josu\'e{} Remedios, \emph{Double groupoids and homotopy 2-types} Appl. Categ. Struct. 20, No. 4, 323-378 (2012), see also \href{http://arxiv.org/abs/1003.3820}{arXiv:1003.3820}. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include homotopy n-types - table]] [[!redirects 2-type]] [[!redirects 2-types]] [[!redirects homotopy 2-types]] \end{document}