\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy T-algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{homotopy $T$-algebra} over a [[Lawvere theory]] $T$ is a model for an $\infty$-algebra over $T$, when the latter is regarded as an [[(∞,1)-algebraic theory]]. As a model, homotopy $T$-algebras are equivalent to strict [[simplicial algebra]]s. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $T$ (the syntactic category of) a [[Lawvere theory]] with generating object $x$ an ordinary [[algebra over a Lawvere theory]] [[functor]] $T \to Set$ that preserves products, in that for all $n \in \mathbb{N}$ the canonical morphism \begin{displaymath} \prod_{i = 1}^n A(p_i) : A(x^n) \to (A(x))^n \end{displaymath} is an [[isomorphism]]. \begin{udefn} A \textbf{homotopy $T$-algebra} is a functor $A : T \to$ [[sSet]] with values in [[Kan complex]]es such that for all $n \in \mathbb{N}$ this canonical morphism is a [[weak homotopy equivalence]]. \end{udefn} For $n \in \mathbb{N}$ write $F_T(n)$ for the free simplicial $T$-algebra on $n$-generators, which is the image of $x^n$ under the [[Yoneda embedding]] $j : T^{op} \to [T,sSet]$. (See [[Lawvere theory]] for more on this.) \begin{uprop} A homotopy $T$-algebra is precisely \begin{itemize}% \item a fibrant object in the projective [[model structure on simplicial presheaves]]; \item which is a [[local object]] with respect to the canonical morphisms \begin{displaymath} \coprod F_T(1) \to F_T(n) \end{displaymath} for all $n \in \mathbb{N}$. \end{itemize} \end{uprop} \begin{proof} The fibrant objects in $[T,sSet]_{proj}$ are precisely the [[Kan complex]]-valued co-presheaves. Because $F_T(n)$ is [[representable functor|representable]], it is cofibrant in $[T,sSet]_{proj}$ (as one easily checks). Therefore the [[derived hom-space]]s between $F_T(\cdots)$ and a degreewise Kan complex-valued $A$ may be computed simply as the [[sSet]]-[[hom-object]]s of the [[simplicial model category]] $[T,sSet]$ and so the degreewise fibrant $A$ being a [[local object]] means that all morphisms of [[sSet]]-[[hom-object]]s \begin{displaymath} [T,sSet](F_T(n),A) \to [T,sSet](\coprod_n F_T(1), A) \,. \end{displaymath} Due to the respect of the [[hom-functor]] for [[limit]]s the expression on the right is \begin{displaymath} \cdots = \prod_n [T,sSet](F_T(1), A) \,. \end{displaymath} Using the [[Yoneda lemma]] the morphism in question is indeed isomorphic to \begin{displaymath} A(x^n) \to A(x)^n \,. \end{displaymath} \end{proof} This observation motivated the following definition. \begin{udef} The \textbf{[[model category]] structure for homotopy $T$-algebras} is the left [[Bousfield localization of model categories|Bousfield localization]] $[T,sSet]_{proj,loc}$ of the projective [[model structure on simplicial presheaves]] $[T,sSet]_{proj}$ at the set of morphisms $\{\coprod_n F_T(1) \to F_T(b)\}_{n \in \mathbb{N}}$. \end{udef} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{uprop} The model structure for homotopy $T$-algebra $[T,sSet]_{proj,loc}$ is a [[left proper model category|left proper]] [[simplicial model category]]. \end{uprop} \begin{proof} Because the [[model structure on simplicial presheaves]] is and left [[Bousfield localization of model categories]] preserves these properties. \end{proof} \begin{ulemma} The inclusion \begin{displaymath} i : T Alg^{\Delta^{op}} \hookrightarrow [T,sSet] \end{displaymath} has a [[left adjoint]] \begin{displaymath} F : [T,sSet] \to T Alg^{\Delta^{op}} \end{displaymath} \end{ulemma} \begin{proof} The [[limit]]s in $T Alg$ are easily seen to be limits in the underlying sets. Hence $i$ preserves all limits. The statement then follows by observing that the assumptions of the special [[adjoint functor theorem]] are met: \begin{itemize}% \item $T Alg$ is complete; \item it is a [[well powered category]] since $[T,Set]$ is and the subobject in $T Alg$ are special subobjects in $[T,Set]$; \item it has a small [[cogenerating set]] given by the representables. \end{itemize} \end{proof} \begin{uremark} An explicit description of $F$ is around [[Higher Topos Theory|HTT, lemma 5.5.9.5]]. \end{uremark} \begin{utheorem} Let $T Alg^{\Delta^{op}}_{proj}$ be the category of [[simplicial object|simplicial]] [[T-algebra]]s equipped with the standard [[model structure on simplicial algebras]] (with weak equivalences and fibrations the degreewise weak equivalences and fibrations in simplicial sets). The adjunction from the previous lemma \begin{displaymath} T Alg^{\Delta^{op}} \stackrel{\overset{F}{\leftarrow}}{\hookrightarrow} [T,sSet] = [T,Set]^{\Delta^{op}} \end{displaymath} is a [[Quillen adjunction]] which is a [[Quillen equivalence]] \begin{displaymath} T Alg^{\Delta^{op}}_{proj} \simeq [T,sSet]_{proj,loc} \,. \end{displaymath} \end{utheorem} This is theorem 1.3 in (\hyperlink{Badzioch}{Badzioch}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The model structure on homotopy $T$-algebras for $T =$ [[CartSp]] the Lawvere theory of [[smooth algebra]]s is considered in (\hyperlink{Spivak}{Spivak}) in the study of [[derived smooth manifold]]. (There is also a bit of disucssion of the relation to the model structure on simplicial algebras there.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[algebra over a monad]] [[∞-algebra over an (∞,1)-monad]] \item [[algebra over an algebraic theory]] [[∞-algebra over an (∞,1)-algebraic theory]] \begin{itemize}% \item \textbf{homotopy T-algebra} / [[model structure on simplicial T-algebras]] \end{itemize} \item [[algebra over an operad]] [[∞-algebra over an (∞,1)-operad]] \begin{itemize}% \item [[model structure on algebras over an operad]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} In \begin{itemize}% \item [[Bernard Badzioch]], \emph{Algebraic theories in homotopy theory} Annals of Mathematics, 155 (2002), 895-913 (\href{http://www.jstor.org/stable/3062135}{JSTOR}) \end{itemize} the model structure on homotopy $T$-algebras is discussed and its Quillen equivalence to simplicial $T$-algebras is proven. A related discussion showing that simplicial $T$ algebras model all $\infty$-$T$-algebras is in \begin{itemize}% \item [[Julie Bergner]], \emph{Rigidification of algebras over multi-sorted theories} , Algebraic and Geometric Topoogy 7, 2007. \end{itemize} The model structure on homotopy $T$-algebras for $T =$ [[CartSp]] the Lawvere theory of [[smooth algebra]]s is considered in \begin{itemize}% \item [[David Spivak]], \emph{Derived smooth manifolds} (\href{http://arxiv.org/abs/0810.5174}{arXiv:0810.5174}) \end{itemize} [[!redirects homotopy T-algebras]] [[!redirects model structure on homotopy T-algebras]] \end{document}