\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_simplicially_enriched_categories}{For simplicially enriched categories}\dotfill \pageref*{for_simplicially_enriched_categories} \linebreak \noindent\hyperlink{for_categories_with_weak_equivalences}{For categories with weak equivalences}\dotfill \pageref*{for_categories_with_weak_equivalences} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} Given a [[category with weak equivalences]] $(\mathcal{C},W)$, then its \emph{homotopy category} $Ho(\mathcal{C})$ is, if it exists, the result of universally forcing the [[weak equivalences]] to become actual [[isomorphisms]], also called the \emph{[[localization]]} at the weak equivalences \begin{displaymath} \mathcal{C} \longrightarrow Ho(\mathcal{C})= \mathcal{C}[W^{-1}] \,. \end{displaymath} The classical example is the category of [[topological spaces]] with weak equivalences those [[continuous functions]] which are \emph{[[homotopy equivalences]]} or \emph{[[weak homotopy equivalences]]}. The corresponding homotopy category is often referred to as ``the homotopy category'', by default, or the ``[[classical homotopy category]]'' for emphasis. This turns out to be equivalent to the category of topological spaces or (for weak homotopy equivalences) of just those [[homeomorphism|homeomorphic]] to [[CW-complexes]] with [[left homotopy]]-[[homotopy class|classes]] of continuous functions between them, whence the name ``homotopy category''. The existence of a homotopy category, as well as tractable presentations of it typically require extra [[properties]] of the class of weak equivalences (such as that they admit a [[calculus of fractions]]) or even extra [[structure]] (such as [[fibration category]]/[[cofibration category]] structure, or full [[model category]] structure, or further enhancements of that to [[simplicial model category]] structures, etc). See at \emph{[[homotopy category of a model category]]} for more on this. More generally, to every [[(∞,1)-category]] is associated a homotopy category, whose morphisms are literally the [[homotopy classes]] of the original morphisms. See at \emph{[[homotopy category of an (∞,1)-category]]} for more on this. These two concepts of ``homotopy category'' are compatible: to a [[category with weak equivalences]] is associated, if it exists, an [[(∞,1)-category]] obtained by universally forcing the [[weak equivalences]] to become actual [[homotopy equivalences]], also called the \emph{[[simplicial localization]]} $L_W \mathcal{C}$ at the weak equivalences. The homotopy categories of $(\mathcal{C},W)$ and of $L_W \mathcal{C}$ coincide, which justifies the terminology ``homotopy category'' generally. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_simplicially_enriched_categories}{}\subsubsection*{{For simplicially enriched categories}}\label{for_simplicially_enriched_categories} Given a simplicially enriched category $C$, we can form for each pair of objects, $x,y$, of objects of $C$, the set, $\pi_0C(x,y)$, of connected components of the `function space' $C(x,y)$. As $\pi_0$ preserves finite limits, this gives a category, denoted $\pi_0(C)$. As 1-simplices in $C(x,y)$ can be often interpreted as being homotopies, this category $\pi_0(C)$ is often called the \emph{homotopy category of $C$}, and then the notation $Ho(C)$ may be used. This notions is closely related to the next, by using, say the [[hammock localisation]] of Dwyer and Kan, as then $\pi_0$ of that simplicially enriched category, coincides with the following. \hypertarget{for_categories_with_weak_equivalences}{}\subsubsection*{{For categories with weak equivalences}}\label{for_categories_with_weak_equivalences} Given a [[category with weak equivalences]] (such as a [[model category]]), its \textbf{homotopy category} $Ho(C)$ is -- if it exists -- the [[category]] which is universal with the property that there is a [[functor]] \begin{displaymath} Q : C \to Ho(C) \end{displaymath} that sends every weak equivalence in $C$ to an [[isomorphism]] in $Ho(C)$. One also writes $Ho(C) := W^{-1}C$ or $C[W^{-1}]$ and calls it the [[localization]] of $C$ at the collection $W$ of weak equivalences. More in detail, the universality of $Ho(C)$ means the following: \begin{itemize}% \item for any (possibly [[large category|large]]) category $A$ and functor $F : C \to A$ such that $F$ sends all $w \in W$ to isomorphisms in $A$, there exists a functor $F_Q : Ho(C) \to A$ and a natural isomorphism \end{itemize} \begin{displaymath} \itexarray{ C &&\stackrel{F}{\to}& A \\ \downarrow^Q& \Downarrow^{\simeq}& \nearrow_{F_Q} \\ Ho(C) } \end{displaymath} \begin{itemize}% \item the functor $Q^* : Func(Ho(C),A) \to Func(C,A)$ is a [[full and faithful functor]]. \end{itemize} The second condition implies that the functor $F_Q$ in the first condition is unique up to unique isomorphism. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item If it exists, the homotopy category $Ho(C)$ is unique up to [[equivalence of categories]]. \item As described at [[localization]], in general, the morphisms of $Ho(C)$ must be constructed using zigzags of morphisms in $C$ in which the backwards-pointing arrows are weak equivalences. This means that in general, $Ho(C)$ need not be [[locally small category|locally small]] even if $C$ is. However, in many cases (such as any [[model category]]) there is a more direct description of the morphisms in $Ho(C)$ as [[homotopy]] classes of maps in $C$ between suitably ``good'' (fibrant and cofibrant) objects. \item In [[2-limit|2-categorical terms]], the homotopy category $Ho(C)$ is the \emph{coinverter} of the canonical 2-cell \begin{displaymath} \itexarray{& \to \\ W & \Downarrow & C\\ & \to} \end{displaymath} where $W$ is the category whose objects are morphisms in $W$ and whose morphisms are commutative squares in $C$. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In classical [[homotopy theory]], \emph{the} homotopy category refers to the homotopy category [[Ho(Top)]] of [[Top]] with weak equivalences taken to be [[weak homotopy equivalences]]. \item [[Ho(Top)]] is often restricted to the [[full subcategory]] of spaces of the [[homotopy type]] of a [[CW-complex]] (the full subcategory of CW-complexes in $Ho(Top)$). This is equivalent to $Ho(sSet_{Quillen})$, the homotopy category of the standard Quillen-[[model structure on simplicial sets]]. This equivalence is one aspect of the [[homotopy hypothesis]]. \item In [[homological algebra]] the localization of the [[category of chain complexes]] at the [[quasi-isomorphisms]] is called the \emph{[[derived category]]}. But see also at \emph{[[homotopy category of chain complexes]]}. \item In [[stable homotopy theory]] one considers the [[stable homotopy category]] of [[spectra]]. \item In [[equivariant stable homotopy theory]] one considers the [[equivariant stable homotopy category]] of spectra. \item For the homotopy category of [[Cat]], see [[Ho(Cat)]]. \item For the homotopy category of that of [[combinatorial model categories]] see [[Ho(CombModCat)]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[homotopy category of a model category]] \item [[homotopy category of an (infinity,1)-category]] \item [[homotopy 2-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} See the references at [[model category]]. [[!redirects homotopy categories]] \end{document}