\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{homotopy category of a model category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{universal_property}{Universal property}\dotfill \pageref*{universal_property} \linebreak \noindent\hyperlink{DerivedFunctors}{Derived functors}\dotfill \pageref*{DerivedFunctors} \linebreak \noindent\hyperlink{further_properties}{Further properties}\dotfill \pageref*{further_properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[model category]] structure $(\mathcal{C}(W,Fib,Cof))$ on some [[category]] $\mathcal{C}$ is a means to guarantee the [[locally small category|local smallness]] and to improve the tractability of the [[homotopy category]] of the underlying [[category with weak equivalences]] $(\mathcal{C},W)$. In particular, if a [[category with weak equivalences]] admits a [[model category]] structure, then its [[homotopy category]] (in the sense of [[localization]] $\mathcal{C}[W^{-1}]$ at the class of [[weak equivalences]]) is [[equivalence of categories|equivalent]] to the category whose objects are those objects of $\mathcal{C}$ which are both fibrant cofibrant, and whose morphisms are the actual [[homotopy classes]] of morphisms between these objects ([[left homotopy]] or [[right homotopy]] [[equivalence classes]] in the sense of [[homotopy in a model category]]) . \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{HomotopyCategoryOfAModelCategory}\hypertarget{HomotopyCategoryOfAModelCategory}{} Let $\mathcal{C}$ be a [[model category]]. Write $Ho(\mathcal{C})$ for the [[category]] whose \begin{itemize}% \item [[objects]] are those objects of $\mathcal{C}$ which are both fibrant and cofibrant; \item [[morphisms]] are the [[homotopy classes]] of morphisms of $\mathcal{C}$, hence the [[equivalence classes]] of morphism under [[left homotopy]]. \end{itemize} \end{defn} This is, up to [[equivalence of categories]], the \emph{homotopy category of the model category} $\mathcal{C}$. \hypertarget{universal_property}{}\subsection*{{Universal property}}\label{universal_property} We spell out that def. \ref{HomotopyCategoryOfAModelCategory} indeed satisfies the [[universal property]] that defines the [[homotopy category]] of a [[category with weak equivalences]]. \begin{lemma} \label{WhiteheadTheoremInModelCategories}\hypertarget{WhiteheadTheoremInModelCategories}{} \textbf{([[Whitehead theorem]] in model categories)} Let $\mathcal{C}$ be a [[model category]]. A [[weak equivalence]] between two objects which are both fibrant and cofibrant is a [[homotopy equivalence]]. \end{lemma} (e.g. \hyperlink{GoerssJardine99}{Goerss-Jardine 99, part I, theorem 1.10}) \begin{proof} By the factorization axioms in $\mathcal{C}$, every weak equivalence $f\colon X \longrightarrow Y$ factors through an object $Z$ as an acyclic cofibration followed by an acyclic fibration. In particular it follows that with $X$ and $Y$ both fibrant and cofibrant, so is $Z$, and hence it is sufficient to prove that acyclic (co-)fibrations between such objects are homotopy equivalences. So let $f \colon X \longrightarrow Y$ be an acyclic fibration between fibrant-cofibrant objects, the case of acyclic cofibrations is [[formal dual|formally dual]]. Then in fact it has a genuine [[right inverse]] given by a lift $f^{-1}$ in the diagram \begin{displaymath} \itexarray{ \emptyset &\rightarrow& X \\ {}^{\mathllap{\in cof}}\downarrow &{}^{{f^{-1}}}\nearrow& \downarrow^{\mathrlap{f}}_{\mathrlap{\in Fib \cap W}} \\ X &=& X } \,. \end{displaymath} To see that $f^{-1}$ is also a [[left inverse]] up to [[left homotopy]], let $Cyl(X)$ be any [[cylinder object]] on $X$, hence a factorization of the [[codiagonal]] on $X$ as a cofibration followed by a an acyclic fibration \begin{displaymath} X \sqcup X \stackrel{\iota_X}{\longrightarrow} Cyl(X) \stackrel{\sigma}{\longrightarrow} X \end{displaymath} and consider the square \begin{displaymath} \itexarray{ X \sqcup X &\stackrel{(f^{-1}\circ f, id)}{\longrightarrow}& X \\ {}^{\mathllap{\iota_X}}{}_{\mathllap{\in Cof}}\downarrow && \downarrow^{\mathrlap{f}}_{\mathrlap{\in W \cap Fib}} \\ Cyl(X) &\underset{f\circ \sigma}{\longrightarrow}& y } \,, \end{displaymath} which [[commuting square|commutes]] due to $f^{-1}$ being a genuine right inverse of $f$. By construction, this [[commuting square]] now admits a [[lift]] $\eta$, and that constitutes a [[left homotopy]] $\eta \colon f^{-1}\circ f \Rightarrow_L id$. \end{proof} \begin{defn} \label{FibrantCofibrantReplacementFunctorToHomotopyCategory}\hypertarget{FibrantCofibrantReplacementFunctorToHomotopyCategory}{} Given a [[model category]] $\mathcal{C}$, consider a \emph{choice} for each object $X \in \mathcal{C}$ of \begin{enumerate}% \item a factorization $\emptyset \underoverset{\in Cof}{i_X}{\longrightarrow} Q X \underoverset{\in W \cap Fib}{p_x}{\longrightarrow} X$ of the initial morphism, such that when $X$ is already cofibrant then $p_X = id_X$; \item a factorization $X \underoverset{\in W \cap Cof}{j_X}{\longrightarrow} R X \underoverset{\in Fib}{q_x}{\longrightarrow} \ast$ of the terminal morphism, such that when $X$ is already fibrant then $j_X = id_X$. \end{enumerate} Write then \begin{displaymath} \gamma_{R,Q} \;\colon\; \mathcal{C} \longrightarrow Ho(\mathcal{C}) \end{displaymath} for the [[functor]] to the homotopy category, def. \ref{HomotopyCategoryOfAModelCategory}, which sends an object $X$ to the object $R Q X$ and sends a morphism $f \colon X \longrightarrow Y$ to the [[homotopy class]] of the result of first lifting in \begin{displaymath} \itexarray{ \emptyset &\longrightarrow& Q Y \\ {}^{\mathllap{i_X}}\downarrow &{}^{Q f}\nearrow& \downarrow^{\mathrlap{p_Y}} \\ Q X &\underset{f\circ p_X}{\longrightarrow}& Y } \end{displaymath} and then lifting (here: [[extension|extending]]) in \begin{displaymath} \itexarray{ Q X &\overset{j_{Q Y} \circ Q f}{\longrightarrow}& R Q Y \\ {}^{\mathllap{j_{Q X}}}\downarrow &{}^{R Q f}\nearrow& \downarrow^{\mathrlap{q_{Q Y}}} \\ R Q X &\longrightarrow& \ast } \,. \end{displaymath} \end{defn} \begin{lemma} \label{ConstructionOfLocalizationFunctorForModelCategoryIsWellDefined}\hypertarget{ConstructionOfLocalizationFunctorForModelCategoryIsWellDefined}{} The construction in def. \ref{FibrantCofibrantReplacementFunctorToHomotopyCategory} is indeed well defined. \end{lemma} \begin{proof} First of all, the object $R Q X$ is indeed both fibrant and cofibrant (as well as related by a [[zig-zag]] of weak equivalences to $X$): \begin{displaymath} \itexarray{ \emptyset \\ {}^{\mathllap{\in Cof}}\downarrow & \searrow^{\mathrlap{\in Cof}} \\ Q X &\underset{\in W \cap Cof}{\longrightarrow}& R Q X &\underset{\in Fib}{\longrightarrow}& \ast \\ {}^{\mathllap{\in W}}\downarrow \\ X } \,. \end{displaymath} Now to see that the image on morphisms is well defined. First observe that any two choices $(Q f)_{i}$ of the first lift in the definition are left homotopic to each other, exhibited by lifting in \begin{displaymath} \itexarray{ Q X \sqcup Q X &\stackrel{((Q f)_1, (Q f)_2 )}{\longrightarrow}& Q Y \\ {}^{\mathllap{\in W \cap Cof}}\downarrow && \downarrow^{\mathrlap{p_{Y}}}_{\mathrlap{\in Fib}} \\ Cyl(Q X) &\underset{f \circ p_{X} \circ \sigma_{Q X}}{\longrightarrow}& Y } \,. \end{displaymath} Hence also the composites $j_{Q Y}\circ (Q_f)_i$ are [[left homotopy|left homotopic]] to each other, and since their domain is cofibrant, they are also [[right homotopy|right homotopic]] (via \href{homotopy+in+a+model+category#LeftHomotopyWithCofibrantDomainImpliesRightHomotopyAndDually}{this} lemma) by a right homotopy $\kappa$. This implies finally, by lifting in \begin{displaymath} \itexarray{ Q X &\overset{\kappa}{\longrightarrow}& Path(R Q Y) \\ {}^{\mathllap{\in W \cap Cof}}\downarrow && \downarrow^{\mathrlap{\in Fib}} \\ R Q X &\underset{(R (Q f)_1, R (Q f)_2)}{\longrightarrow}& R Q Y \times R Q Y } \end{displaymath} that also $R (Q f)_1$ and $R (Q f)_2$ are right homotopic, hence that indeed $R Q f$ represents a well-defined [[homotopy class]]. Finally to see that the assignment is indeed [[functor|functorial]], observe that the commutativity of the lifting diagrams for $Q f$ and $R Q f$ imply that also the following diagram commutes \begin{displaymath} \itexarray{ X &\overset{p_X}{\longleftarrow}& Q X &\overset{j_{Q X}}{\longrightarrow}& R Q X \\ {}^{\mathllap{f}}\downarrow && \downarrow^{\mathrlap{Q f}} && \downarrow^{\mathrlap{R Q f}} \\ Y &\underset{p_y}{\longleftarrow}& Q Y &\underset{j_{Q Y}}{\longrightarrow}& R Q Y } \,. \end{displaymath} Now from the [[pasting]] composite \begin{displaymath} \itexarray{ X &\overset{p_X}{\longleftarrow}& Q X &\overset{j_{Q X}}{\longrightarrow}& R Q X \\ {}^{\mathllap{f}}\downarrow && \downarrow^{\mathrlap{Q f}} && \downarrow^{\mathrlap{R Q f}} \\ Y &\underset{p_Y}{\longleftarrow}& Q Y &\underset{j_{Q Y}}{\longrightarrow}& R Q Y \\ {}^{\mathllap{g}}\downarrow && \downarrow^{\mathrlap{Q g}} && \downarrow^{\mathrlap{R Q g}} \\ Z &\underset{p_Z}{\longleftarrow}& Q Z &\underset{j_{Q Z}}{\longrightarrow}& R Q Z } \end{displaymath} one sees that $(R Q g)\circ (R Q f)$ is a lift of $g \circ f$ and hence the same argument as above gives that it is homotopic to the chosen $R Q(g \circ f)$. \end{proof} \begin{defn} \label{HomotopyCategoryOfACategoryWithWeakEquivalences}\hypertarget{HomotopyCategoryOfACategoryWithWeakEquivalences}{} For $\mathcal{C}$ a [[category with weak equivalences]], its \emph{[[homotopy category]]} (or: \emph{[[localization]]} at the weak equivalences) is, if it exists, a [[category]] $Ho(\mathcal{C})$ equipped with a [[functor]] \begin{displaymath} \gamma \colon \mathcal{C} \longrightarrow Ho(C) \end{displaymath} which sends weak equivalences to [[isomorphisms]], and which is [[universal property|universal with this property]]: for $F \colon \mathcal{C} \longrightarrow D$ any [[functor]] out of $\mathcal{C}$ into any [[category]], such that $F$ takes weak equivalences to [[isomorphisms]], it factors through $\gamma$ up to a [[natural isomorphism]] \begin{displaymath} \itexarray{ \mathcal{C} && \overset{F}{\longrightarrow} && D \\ & {}_{\mathllap{\gamma}}\searrow &\Downarrow^{\rho}& \nearrow_{\mathrlap{\tilde F}} \\ && Ho(\mathcal{C}) } \end{displaymath} and this factorization is unique up to unique isomorphism, in that for $(\tilde F_1, \rho_1)$ and $(\tilde F_2, \rho_2)$ two such factorizations, then there is a unique [[natural isomorphism]] $\kappa \colon \tilde F_1 \Rightarrow \tilde F_2$ making the evident diagram of natural isomorphisms commute. \end{defn} \begin{theorem} \label{UniversalPropertyOfHomotopyCategoryOfAModelCategory}\hypertarget{UniversalPropertyOfHomotopyCategoryOfAModelCategory}{} For $\mathcal{C}$ a [[model category]], the functor $\gamma_{R,Q}$ in def. \ref{FibrantCofibrantReplacementFunctorToHomotopyCategory} (for any choice of $R$ and $Q$) exhibits $Ho(\mathcal{C})$ as indeed being the [[homotopy category]] of the underlying [[category with weak equivalences]], in the sense of def. \ref{HomotopyCategoryOfACategoryWithWeakEquivalences}. \end{theorem} \begin{proof} First, to see that that $\gamma$ indeed takes weak equivalences to isomorphisms: By [[two-out-of-three]] applied to the [[commuting diagrams]] shown in the proof of lemma \ref{ConstructionOfLocalizationFunctorForModelCategoryIsWellDefined} the morphism $R Q f$ is a weak equivalence if $f$ is: \begin{displaymath} \itexarray{ X &\underoverset{\simeq}{p_X}{\longleftarrow}& Q X &\underoverset{\simeq}{j_{Q X}}{\longrightarrow}& R Q X \\ {}^{\mathllap{f}}\downarrow && \downarrow^{\mathrlap{Q f}} && \downarrow^{\mathrlap{R Q f}} \\ Y &\underoverset{p_y}{\simeq}{\longleftarrow}& Q Y &\underoverset{j_{Q Y}}{\simeq}{\longrightarrow}& R Q Y } \end{displaymath} With this the ``Whitehead theorem for model categories'', lemma \ref{WhiteheadTheoremInModelCategories}, implies that $R Q f$ represents an isomorphism in $Ho(\mathcal{C})$. Now let $F \colon \mathcal{C}\longrightarrow D$ be any functor that sends weak equivalences to isomorphisms. We need to show that it factors as \begin{displaymath} \itexarray{ \mathcal{C} && \overset{F}{\longrightarrow} && D \\ & {}_{\mathllap{\gamma}}\searrow &\Downarrow^{\rho}& \nearrow_{\mathrlap{\tilde F}} \\ && Ho(\mathcal{C}) } \end{displaymath} uniquely up to unique [[natural isomorphism]]. Now by construction of $R$ and $Q$ in def. \ref{FibrantCofibrantReplacementFunctorToHomotopyCategory}, $\gamma_{R,Q}$ is the identity on the [[full subcategory]] of fibrant-cofibrant objects. It follows that if $\tilde F$ exists at all, it must satisfy for all $X \stackrel{f}{\to} Y$ with $X$ and $Y$ both fibrant and cofibrant that \begin{displaymath} \tilde F([f]) \simeq F(f) \,. \end{displaymath} But by def. \ref{HomotopyCategoryOfAModelCategory} that already fixes $\tilde F$ on all of $Ho(\mathcal{C})$, up to unique [[natural isomorphism]]. Hence it only remains to check that with this definition of $\tilde F$ there exists any [[natural isomorphism]] $\rho$ filling the diagram above. To that end, apply $F$ to the above [[commuting diagram]] to obtain \begin{displaymath} \itexarray{ F(X) &\underoverset{iso}{F(p_X)}{\longleftarrow}& F(Q X) &\underoverset{iso}{F(j_{Q X})}{\longrightarrow}& F(R Q X) \\ {}^{\mathllap{F(f)}}\downarrow && \downarrow^{\mathrlap{F(Q f)}} && \downarrow^{\mathrlap{F(R Q f)}} \\ F(Y) &\underoverset{F(p_y)}{iso}{\longleftarrow}& F(Q Y) &\underoverset{F(j_{Q Y})}{iso}{\longrightarrow}& F(R Q Y) } \,. \end{displaymath} Here now all horizontal morphisms are [[isomorphisms]], by assumption on $F$. It follows that defining $\rho_X \coloneqq F(j_{Q X}) \circ F(p_X)^{-1}$ makes the required natural isomorphism: \begin{displaymath} \itexarray{ \rho_X \colon & F(X) &\underoverset{iso}{F(p_X)^{-1}}{\longrightarrow}& F(Q X) &\underoverset{iso}{F(j_{Q X})}{\longrightarrow}& F(R Q X) &=& \tilde F(\gamma_{R,Q}(X)) \\ & {}^{\mathllap{F(f)}}\downarrow && && \downarrow^{\mathrlap{F(R Q f)}} && \downarrow^{\tilde F(\gamma_{R,Q}(X))} \\ \rho_Y\colon& F(Y) &\underoverset{F(p_y)^{-1}}{iso}{\longrightarrow}& F(Q Y) &\underoverset{F(j_{Q Y})}{iso}{\longrightarrow}& F(R Q Y) &=& \tilde F(\gamma_{R,Q}(X)) } \,. \end{displaymath} \end{proof} \begin{remark} \label{EssentialUniquenessOfLocalizationFunctorOfModelCategory}\hypertarget{EssentialUniquenessOfLocalizationFunctorOfModelCategory}{} Due to theorem \ref{UniversalPropertyOfHomotopyCategoryOfAModelCategory} we may suppress the choices of cofibrant $Q$ and fibrant replacement $R$ in def. \ref{FibrantCofibrantReplacementFunctorToHomotopyCategory} and just speak of [[generalized the|the]] [[localization functor]] \begin{displaymath} \gamma \;\colon\; \mathcal{C} \longrightarrow Ho(\mathcal{C}) \end{displaymath} up to [[natural isomorphism]]. \end{remark} While the construction of the homotopy category in def. \ref{HomotopyCategoryOfAModelCategory} combines the restriction to good (fibrant/cofibrant) objects with the passage to [[homotopy classes]] of morphisms, it is often useful to consider intermediate stages: \begin{defn} \label{FullSubcategoriesOfFibrantCofibrantObjects}\hypertarget{FullSubcategoriesOfFibrantCofibrantObjects}{} Given a [[model category]] $\mathcal{C}$, write \begin{displaymath} \itexarray{ && \mathcal{C}_{fc} \\ & \swarrow && \searrow \\ \mathcal{C}_c && && \mathcal{C}_f \\ & \searrow && \swarrow \\ && \mathcal{C} } \end{displaymath} for the system of [[full subcategory]] inclusions on the cofibrant objects ($\mathcal{C}_c$), the fibrant objects ($\mathcal{C}_f$) and the objects which are both fibrant and cofibrant ($\mathcal{C}_{fc}$), all regarded a [[categories with weak equivalences]], via the weak equivalences inherited from $\mathcal{C}$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Of course the subcategories in def. \ref{FullSubcategoriesOfFibrantCofibrantObjects} inherit more structure than just that of [[categories with weak equivalences]] from $\mathcal{C}$. $\mathcal{C}_f$ and $\mathcal{C}_c$ each inherit ``half'' of the factorization axioms. One says that $\mathcal{C}_f$ has the structure of a ``[[fibration category]]'' called a ``[[category of fibrant objects]]'', while $\mathcal{C}_c$ has the structure of a ``[[cofibration category]]''. \end{remark} The proof of theorem \ref{UniversalPropertyOfHomotopyCategoryOfAModelCategory} immediately implies the following: \begin{cor} \label{HomotopyCategoryOfSubcategoriesOfModelCategoriesOnGoodObjects}\hypertarget{HomotopyCategoryOfSubcategoriesOfModelCategoriesOnGoodObjects}{} For $\mathcal{C}$ a [[model category]], the restriction of the localization functor $\gamma\;\colon\; \mathcal{C} \longrightarrow Ho(\mathcal{C})$ from def. \ref{FibrantCofibrantReplacementFunctorToHomotopyCategory} (using remark \ref{EssentialUniquenessOfLocalizationFunctorOfModelCategory}) to any of the sub-[[categories with weak equivalences]] of def. \ref{FullSubcategoriesOfFibrantCofibrantObjects} \begin{displaymath} \itexarray{ && \mathcal{C}_{fc} \\ & \swarrow && \searrow \\ \mathcal{C}_c && && \mathcal{C}_f \\ & \searrow && \swarrow \\ && \mathcal{C} \\ && \downarrow^{\mathrlap{\gamma}} \\ && Ho(\mathcal{C}) } \end{displaymath} exhibits $Ho(\mathcal{C})$ equivalently as the [[homotopy category]] also of these subcategories. In particular there are [[equivalences of categories]] \begin{displaymath} Ho(\mathcal{C}) \simeq Ho(\mathcal{C}_{f}) \simeq Ho(\mathcal{C}_{c}) \simeq Ho(\mathcal{C}_{fc}) \,. \end{displaymath} \end{cor} \hypertarget{DerivedFunctors}{}\subsection*{{Derived functors}}\label{DerivedFunctors} \begin{defn} \label{HomotopicalFunctor}\hypertarget{HomotopicalFunctor}{} For $\mathcal{C}$ and $\mathcal{D}$ two [[categories with weak equivalences]], then a [[functor]] $F \colon \mathcal{C}\longrightarrow \mathcal{D}$ is called \emph{[[homotopical functor]]} if it sends weak equivalences to weak equivalences. \end{defn} \begin{defn} \label{DerivedFunctorOfAHomotopicalFunctor}\hypertarget{DerivedFunctorOfAHomotopicalFunctor}{} Given a [[homotopical functor]] $F \colon \mathcal{C} \longrightarrow \mathcal{D}$ (def. \ref{HomotopicalFunctor}) between [[categories with weak equivalences]] whose [[homotopy categories]] $Ho(\mathcal{C})$ and $Ho(\mathcal{D})$ exist (def. \ref{HomotopyCategoryOfACategoryWithWeakEquivalences}), then its \emph{[[derived functor]]} is the functor $Ho(F)$ between these homotopy categories which is induced uniquely, up to unique isomorphism, by their universal property (def. \ref{HomotopyCategoryOfACategoryWithWeakEquivalences}): \begin{displaymath} \itexarray{ \mathcal{C} &\overset{F}{\longrightarrow}& \mathcal{D} \\ {}^{\mathllap{\gamma_{\mathcal{C}}}}\downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\gamma_{\mathcal{D}}}} \\ Ho(\mathcal{C}) &\underset{\exists \; Ho(F)}{\longrightarrow}& Ho(\mathcal{D}) } \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} While many functors of interest between [[model categories]] are not homotopical in the sense of def. \ref{HomotopicalFunctor}, many become homotopical after restriction to the [[full subcategories]] of fibrant object or of cofibrant objects, def. \ref{FullSubcategoriesOfFibrantCofibrantObjects}. By corollary \ref{HomotopyCategoryOfSubcategoriesOfModelCategoriesOnGoodObjects} this is just as good for the purpose of [[homotopy theory]]. \end{remark} Therefore one considers the following generalization of def. \ref{DerivedFunctorOfAHomotopicalFunctor}: \begin{defn} \label{LeftAndRightDerivedFunctorsOnModelCategories}\hypertarget{LeftAndRightDerivedFunctorsOnModelCategories}{} Consider a functor $F \colon \mathcal{C} \longrightarrow \mathcal{D}$ out of a [[model category]] $\mathcal{C}$ into a [[category with weak equivalences]] $\mathcal{D}$. \begin{enumerate}% \item If the restriction of $F$ to the [[full subcategory]] $\mathcal{C}_f$ of fibrant object becomes a [[homotopical functor]] (def. \ref{HomotopicalFunctor}), then the [[derived functor]] of that restriction, according to def. \ref{DerivedFunctorOfAHomotopicalFunctor}, is called the \emph{[[right derived functor]]} of $F$ and denoted by $\mathbb{R}F$: \begin{displaymath} \itexarray{ & \mathcal{C}_f &\hookrightarrow& \mathcal{C} &\overset{F}{\longrightarrow}& \mathcal{D} \\ & {}^{\mathllap{\gamma}_{\mathcal{C}_f}}\downarrow && \downarrow^{\mathrlap{\gamma_{\mathcal{C}}}} &\swArrow_{\simeq}& \downarrow^{\mathrlap{\gamma_{\mathcal{D}}}} \\ \mathbb{R} F \colon & Ho(\mathcal{C}_f) &\simeq& Ho(\mathcal{C}) &\underset{Ho(F)}{\longrightarrow}& Ho(\mathcal{D}) } \,. \end{displaymath} Here the commuting square on the left is from corollary \ref{HomotopyCategoryOfSubcategoriesOfModelCategoriesOnGoodObjects}, the square on the right is that of def. \ref{DerivedFunctorOfAHomotopicalFunctor}. \item If the restriction of $F$ to the [[full subcategory]] $\mathcal{C}_c$ of cofibrant object becomes a homotopical functor (def. \ref{HomotopicalFunctor}), then the [[derived functor]] of that restriction, according to def. \ref{DerivedFunctorOfAHomotopicalFunctor}, is called the \emph{[[left derived functor]]} of $F$ and denoted by $\mathbb{L}F$: \begin{displaymath} \itexarray{ & \mathcal{C}_c &\hookrightarrow& \mathcal{C} &\overset{F}{\longrightarrow}& \mathcal{D} \\ & {}^{\mathllap{\gamma}_{\mathcal{C}_f}}\downarrow && \downarrow^{\mathrlap{\gamma_{\mathcal{C}}}} &\swArrow_{\simeq}& \downarrow^{\mathrlap{\gamma_{\mathcal{D}}}} \\ \mathbb{L} F \colon & Ho(\mathcal{C}_c) &\simeq& Ho(\mathcal{C}) &\underset{Ho(F)}{\longrightarrow}& Ho(\mathcal{D}) } \,. \end{displaymath} Here the commuting square on the left is from corollary \ref{HomotopyCategoryOfSubcategoriesOfModelCategoriesOnGoodObjects}, the square on the right is that of def. \ref{DerivedFunctorOfAHomotopicalFunctor}. \end{enumerate} \end{defn} The key fact that makes def. \ref{LeftAndRightDerivedFunctorsOnModelCategories} practically useful is the following \begin{prop} \label{KenBrownLemma}\hypertarget{KenBrownLemma}{} \textbf{([[Ken Brown's lemma]])} Let $\mathcal{C}$ be a [[model category]] with [[full subcategories]] $\mathcal{C}_f, \mathcal{C}_c$ [[category of fibrant objects|of fibrant objects]] and [[cofibration category|of cofibrant objects]] respectively (def. \ref{FullSubcategoriesOfFibrantCofibrantObjects}). Let $\mathcal{D}$ be a [[category with weak equivalences]]. \begin{enumerate}% \item A [[functor]] \begin{displaymath} F \;\colon\; \mathcal{C}_f \longrightarrow \mathcal{D} \end{displaymath} \end{enumerate} is a [[homotopical functor]], def. \ref{HomotopicalFunctor}, already if it sends acylic fibrations to weak equivalences. \begin{enumerate}% \item A [[functor]] \begin{displaymath} F \;\colon\; \mathcal{C}_c \longrightarrow \mathcal{D} \end{displaymath} \end{enumerate} is a [[homotopical functor]], def. \ref{HomotopicalFunctor}, already if it sends acylic cofibrations to weak equivalences. \end{prop} \begin{cor} \label{LeftAndRightDerivedFunctors}\hypertarget{LeftAndRightDerivedFunctors}{} Let $\mathcal{C}, \mathcal{D}$ be [[model categories]] and consider $F \colon \mathcal{C}\longrightarrow \mathcal{D}$ a [[functor]]. Then: \begin{enumerate}% \item If $F$ preserves cofibrant objects and acyclic cofibrations between these, then its [[left derived functor]] (def. \ref{LeftAndRightDerivedFunctorsOnModelCategories}) $\mathbb{L}F$ exists, fitting into a [[diagram]] \begin{displaymath} \itexarray{ \mathcal{C}_{c} &\overset{F}{\longrightarrow}& \mathcal{D}_{c} \\ {}^{\mathllap{\gamma_{\mathcal{C}}}}\downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\gamma_{\mathcal{D}}}} \\ Ho(\mathcal{C}) &\overset{\mathbb{L}F}{\longrightarrow}& Ho(\mathcal{D}) } \end{displaymath} \item If $F$ preserves fibrant objects and acyclic fibrants between these, then its [[right derived functor]] (def. \ref{LeftAndRightDerivedFunctorsOnModelCategories}) $\mathbb{R}F$ exists, fitting into a [[diagram]] \begin{displaymath} \itexarray{ \mathcal{C}_{f} &\overset{F}{\longrightarrow}& \mathcal{D}_{f} \\ {}^{\mathllap{\gamma_{\mathcal{C}}}}\downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\gamma_{\mathcal{D}}}} \\ Ho(\mathcal{C}) &\underset{\mathbb{R}F}{\longrightarrow}& Ho(\mathcal{D}) } \,. \end{displaymath} \end{enumerate} \end{cor} In practice it turns out to be useful to arrange for the assumptions in corollary \ref{LeftAndRightDerivedFunctors} to be satisfied in the following neat way: \begin{defn} \label{QuillenAdjunction}\hypertarget{QuillenAdjunction}{} Let $\mathcal{C}, \mathcal{D}$ be [[model categories]]. A pair of [[adjoint functors]] between them \begin{displaymath} (L \dashv R) \;\colon\; \mathcal{C} \stackrel{\overset{L}{\longleftarrow}}{\underset{R}{\longrightarrow}} \mathcal{D} \end{displaymath} is called a \emph{[[Quillen adjunction]]} (and $L$,$R$ are called left/right \emph{Quillen functors}, respectively) if the following equivalent conditions are satisfied \begin{enumerate}% \item $L$ preserves cofibrations and $R$ preserves fibrations; \item $L$ preserves acyclic cofibrations and $R$ preserves acyclic fibrations; \item $L$ preserves cofibrations and acylic cofibrations; \item $R$ preserves fibrations and acyclic fibrations. \end{enumerate} \end{defn} \begin{prop} \label{ConditionsOnQuillenAdjunctionAreIndeedEquivalent}\hypertarget{ConditionsOnQuillenAdjunctionAreIndeedEquivalent}{} The conditions in def. \ref{QuillenAdjunction} are indeed all equivalent. \end{prop} \begin{proof} Observe that \begin{itemize}% \item (i) \emph{A [[left adjoint]] $L$ between [[model categories]] preserves acyclic cofibrations precisely if its [[right adjoint]] $R$ preserves fibrations.} \item (ii) \emph{A [[left adjoint]] $L$ between [[model categories]] preserves cofibrations precisely if its [[right adjoint]] $R$ preserves acyclic fibrations.} \end{itemize} We discuss statement (i), statement (ii) is [[formal dual|formally dual]]. So let $f\colon A \to B$ be an acyclic cofibration in $\mathcal{D}$ and $g \colon X \to Y$ a fibration in $\mathcal{C}$. Then for every [[commuting diagram]] as on the left of the following, its $(L\dashv R)$-[[adjunct]] is a commuting diagram as on the right here: \begin{displaymath} \itexarray{ A &\longrightarrow& R(X) \\ {}^{\mathllap{f}}\downarrow && \downarrow^{\mathrlap{R(g)}} \\ B &\longrightarrow& R(Y) } \;\;\;\;\;\; \,, \;\;\;\;\;\; \itexarray{ L(A) &\longrightarrow& X \\ {}^{\mathllap{L(f)}}\downarrow && \downarrow^{\mathrlap{g}} \\ L(B) &\longrightarrow& Y } \,. \end{displaymath} If $L$ preserves acyclic cofibrations, then the diagram on the right has a [[lift]], and so the $(L\dashv R)$-[[adjunct]] of that lift is a lift of the left diagram. This shows that $R(g)$ has the [[right lifting property]] against all acylic cofibrations and hence is a fibration. Conversely, if $R$ preserves fibrations, the same argument run from right to left gives that $L$ preserves acyclic fibrations. Now by repeatedly applying (i) and (ii), all four conditions in question are seen to be equivalent. \end{proof} \begin{defn} \label{QuillenEquivalence}\hypertarget{QuillenEquivalence}{} For $\mathcal{C}, \mathcal{D}$ two [[model categories]], a [[Quillen adjunction]] (def.\ref{QuillenAdjunction}) \begin{displaymath} (L \dashv R) \;\colon\; \mathcal{C} \stackrel{\overset{L}{\longleftarrow}}{\underset{R}{\longrightarrow}} \mathcal{D} \end{displaymath} is called a \textbf{[[Quillen equivalence]]} if the following equivalent conditions hold. \begin{enumerate}% \item The [[right derived functor]] of $R$ (via prop. \ref{ConditionsOnQuillenAdjunctionAreIndeedEquivalent}, corollary \ref{LeftAndRightDerivedFunctors}) is an [[equivalence of categories]] \begin{displaymath} \mathbb{R}R \colon Ho(\mathcal{C}) \overset{\simeq}{\longrightarrow} Ho(\mathcal{D}) \,. \end{displaymath} \item The [[left derived functor]] of $L$ (via prop. \ref{ConditionsOnQuillenAdjunctionAreIndeedEquivalent}, corollary \ref{LeftAndRightDerivedFunctors}) is an [[equivalence of categories]] \begin{displaymath} \mathbb{L}L \colon Ho(\mathcal{D}) \overset{\simeq}{\longrightarrow} Ho(\mathcal{C}) \,. \end{displaymath} \item For every cofibrant object $d \in \mathcal{D}$ and every fibrant object $c \in \mathcal{C}$, a morphism $d \longrightarrow R(c)$ is a weak equivalence precisely if its [[adjunct]] morphism $L(c) \to d$ is \begin{displaymath} \frac{ d \overset{\in W_{\mathcal{D}}}{\longrightarrow} R(c) }{ L(d) \overset{\in W_{\mathcal{C}}}{\longrightarrow} c } \,. \end{displaymath} \item For every cofibrant object $d\in \mathcal{C}$, the [[derived adjunction unit]], hence the composite \begin{displaymath} d \longrightarrow R(L(d)) \longrightarrow R(L(d)^{fib}) \end{displaymath} (of the [[adjunction unit]] with any [[fibrant replacement]]) is a [[weak equivalence]]. \item For every fibrant object $c \in \mathcal{C}$ the [[derived adjunction counit]], hence the composite \begin{displaymath} L(R(c)^{cof}) \longrightarrow L(R(c)) \longrightarrow c \end{displaymath} (of the [[adjunction counit]] with any [[cofibrant replacement]]) is a [[weak equivalence]]. \end{enumerate} \end{defn} \hypertarget{further_properties}{}\subsection*{{Further properties}}\label{further_properties} This construction extends to a [[double pseudofunctor]] \begin{displaymath} Ho \;\colon\; ModCat_{dbl} \longrightarrow Sq(Cat) \end{displaymath} on the [[double category of model categories]] (\href{double+category+of+model+categories#HomotopyDoublePseudofunctor}{this Prop.}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monoidal homotopy category of a monoidal model category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original account is due to \begin{itemize}% \item [[Daniel Quillen]], \emph{Axiomatic homotopy theory} in \emph{Homotopical algebra}, Lecture Notes in Mathematics, No. 43 43, Berlin (1967) \end{itemize} Review includes \begin{itemize}% \item [[William Dwyer]], J. Spalinski, \emph{[[Homotopy theories and model categories]]} (\href{http://folk.uio.no/paularne/SUPh05/DS.pdf}{pdf}) in [[Ioan Mackenzie James]] (ed.), \emph{[[Handbook of Algebraic Topology]]} 1995 \item [[Paul Goerss]], [[Rick Jardine]], section II.1 of \emph{[[Simplicial homotopy theory]]} Birkh\"a{}user 1999, 2009 \end{itemize} [[!redirects homotopy categories of model categories]] \end{document}